
Organization of this Guide

I. ConfigurationBasic model and how it worksSyntax - json, _ %
%%; defining values; declaring objectsIncluded
setupcoreservicesidauthlocal/grizzlyAWS/lambdamemory/dynamo
bootstrap/cloud_bootstraplocal configConfigure Cloud
Standup (the script uses this to invoke some version of deployer
over cloudformation)cloud to connect to (AWS is the only
current option)bucket to store CF instack namecomponents to
deploy and how to connect to cloud resources, roles etc.custom
domains to configureAlso obviously requires to be done as a
specific user, but probably on the command line

II. AdminScripts - aws_standup and zinikiincluding all the
optionsflas integration--ziniki most obviously, but probably
other things too.memory admin, dump etc.configuring domains
into a serveradding OpenID & OAuth providerstracing can be
done with cloudwatch but we should have some additional
toolsin particular catching errors and notificationsbackups in
cloud are assumed to be handled by cloud infrastructure
(glacier, etc)Commerce Admin?Installing new services (not
including FLAS)?Installing modules

III. APIsDataStoreContentStoreUploader… and more in
timeCommerceAnalyticsMail

IV. More technical informationWorking with self-signed
certificatesZiWSH/Websockets/Push NotificationsOpenID &
OAuth integration

Page 2



A ziniki command

The ziniki command allows developers to start a local Ziniki
instance from the command line.

Ziniki startup is controlled by configuration files. These JSON
files control which Ziniki components are configured into a
runtime system and how they interact. It is possible to
configure Ziniki from scratch by specifying the configuration of
all the desired components; however, it is generally easier (and
more reliable) to select from some prepackaged options

A.1 Prepackaged configurations

It is not possible to start ziniki from the command line without
any arguments. Even the simplest prepackaged configuration
requires a number of parameters to be specified, such as the
hostname and ports it will listen on, and a TLS certificate to
handle security. These are the parameters which must be set to
identify the environment in which Ziniki will be operated.

An example parameter file is provided in the file
config/env/domain.com.json, and the parameters specified
here are described in full in the section "Environment
Parameters" below.

Every configuration file to be passed to Ziniki needs to be
specified with the --configFile option which takes an
appropriate path. Thus, the simplest way to start Ziniki is to
use the example configuration file:

bin/ziniki --configFile config/env/domain.test.json

Initially, this will not work because the Ziniki needs TLS in
order to function, and the configuration file references a
non-existent PKCS12 keystore, keys/domain.test.p12. This
file needs to be created using ziniki-cert before Ziniki will
start. You may, however, wish to make other changes: this file
uses the domain domain.test, which may not be what you
want. If you want to run multiple Ziniki servers on the same
node, you will need to change the port numbers, etc.

If you want to change the name of the domain, it is
recommended to copy all of the parameters to a new file
reflecting the name of the domain.

Page 4



A.2 Common Options

There are a number of common options that control how Ziniki
is run independent of the configuration.

Because Ziniki is a Java program, it is possible to specify
properties to the Java virtual machine. Some of these control
underlying behaviors (such as the versions of TLS that can be
used) and others can be used to control aspects of Ziniki which
cannot be configured using the standard configuration file
mechanism.

All parameters specified on the ziniki command line
beginning with -D are collected and passed directly to the Java
virtual machine without any checks.

Specify a Java Properties file to configure the tracing mechanism
in Ziniki. By default, tracing will be sent to the console and only
warning and error messages will be displayed.

If neither the --custom or --trace options are used, then this
specifies that the default tracing will be used, but messages will
be issued at the INFO level.

If neither the --custom or --trace options are used, then this
specifies that the default tracing will be used, but messages will
be issued at the DEBUG level.

A.3 Packaging Options

By default, Ziniki starts up as a single process, operating
entirely in memory and offering Ziniki, admin, authentication
and identity services as well as a content store (all on different
ports). The packaging options enable all of these configurations
to be changed fairly easily, although it may require additional
options to be provided in the environment.

Offer the Ziniki service. Although this is provided by default,
this option is regressive: specifying it turns off the default
offering and means that (unless they are also explicitly
specified) the authentication and identity services will not be
offered.

Page 5

Offer the authentication service. Although this is provided by
default, this option is regressive: specifying it turns off the
default offering and means that (unless they are also explicitly
specified) the Ziniki and identity services will not be offered.

Offer the identity service. Although this is provided by default,
this option is regressive: specifying it turns off the default
offering and means that (unless they are also explicitly
specified) the Ziniki and authentication services will not be
offered.

By default, Ziniki operates entirely in memory, with a clean
initialization at the start of every run. However, it can be useful
to load in an existing, prepared state. The --dbfile option
offers the ability to load a ZIP file into memory before the run
starts. Note that this is a read-only operation: Ziniki will never
update this file. To obtain a ZIP file containing the current
memory contents, it is necessary to use the /zip operation on
the admin interface.

If you do not want to run Ziniki entirely in memory, it is
possible to connect to an existing AWS environment and use the
Dynamo and S3 resources provided there. The --aws option
incorporates the relevant options to replace the in-memory
database and content storage options with their AWS
equivalents. This may require additional environment
configuration to operate. It will also require manual setup and
configuration of the Ziniki server.

A.4 Environment Parameters

The various packaging options do most of the "heavy lifting" to
set up and configure a Ziniki instance. However, they depend
on certain values which must be specified by the user. These
are provided in the "environment file" - the file which describes
the environment in which Ziniki is to run. Most importantly,
these describe the domain on which Ziniki will respond, the
ports it will use and the TLS configuration.

Like all Ziniki configuration files, the environment file is in
JSON format.

Page 6



This is the alleged server virtual host name (more complex
Ziniki configurations can support multiple virtual hosts). This
is a DNS name which should be routed to the local machine
using a hosts file or other routing technology.

In order for Ziniki to bootstrap itself, it must have at least one
user. In a live environment, this user is configured during the
setup process. For simplicity during development, the setup
process is automated and creates an initial Domain object
corresponding to the value of host and associates that with the
specified firstUser. This should be a valid OpenID or OAuth
user URI. If you are using the builtin Ziniki authentication
server, this will be an openID of the form:

https://ziniki.<host>:<idPort>/id/<name>

If you are using an external authentication source, you will need
to consult its documentation to find out what your userid is.

The standard Ziniki configuration uses a total of six ports. The
"main" port is the zinikiPort, which is where Ziniki will install
its HTTPS server for handling requests for login, requesting
applications and the like.

When Ziniki has its own authentication server enabled, the
authentication server runs on this port, to offer the login
window.

When Ziniki has its own authentication enabled, this is the port
that will be used in id URIs.

The adminPort is used to access the administration functions of
Ziniki. Exactly what will be available on this port depends on
which modules have been installed, but with the standard
configuration of the Ziniki in developer mode, this enables you
to access the internals of the memory store at runtime.

Ziniki depends on access to a content store. In live
environments, this is provided by a cloud storage service such
as S3. In developer mode, an internal memory storage is used
and served directly from the same Ziniki instance. To
differentiate the services, the contentPort is used to identify
requests to the content store.

Page 7

Once logged in, most of the communication between Ziniki
clients and servers takes place over a websocket. This
connection takes place over a distinct hostname (wsapi.domain
rather than ziniki.domain) and with the port number specified
by wsapiPort.

In order to configure TLS for Ziniki, it is necessary to specify the
appropriate certificate information. Currently, Ziniki offers two
mechanisms: "standard" JKS keystores, or PKCS12 files. Both
are configured the same way, as shown in the
domain.test.json example:

"tlsconfig": {
"class": "org.ziniki.server.main.grizzly.PKCS12Config",
"root": "root",
"file": "keys/domain.test.p12",
"password": "password"
}

If you want to use a JKS keystore, replace the value of the class
key with org.ziniki.server.main.grizzly.JKSConfig. Both
require the same set of parameters. Note that no keystore files
are shipped with Ziniki; you will need to create your own. The
ziniki-cert script is provided to assist with this.

A.5 The --custom option

For full flexibility, it is possible to specify the --custom option,
which stops any of the default options being used. It is then
necessary to specify individual options to configure Ziniki. All
of the pre-packaged options can still be used, but the following
options will generally be needed to achieve a working
configuration. Note that these options can also be used in
combination with the pre-packaged options to obtain more
complex configurations.

By default, the Ziniki instance uses the install directory (i.e. the
parent directory of the bin directory in which the script is
located) as its "root" directory. It uses this to find all of its
standard resources. The --root options allows you to explicitly
specify another directory.

Page 8



You can specify arbitrary JSON configuration directly on the
command line using the --config option. This is generally
only practical for specifying individual configuration options.
Note that even if you are specifying just a single parameter, it
still needs to be in JSON object syntax, including having the
field names and string arguments enclosed in double quotes.

Read a JSON configuration from a specified file.

Create a user during initial setup. This option may be specified
multiple times to create multiple users.

Note that since users are associated with domains, all the
domains associated with these users will also be automatically
created. Each domain will only be created once, no matter how
many users are associated with it.

In general, all FLAS code to be included in Ziniki is uploaded
using the compiler at runtime. However, for convenience,
existing FLIM directories may be loaded into development
Ziniki instances directly from the command line using this
option.

Multiple directories may be specified using this option. In this
case, all of the packages in all of the directories will be loaded.

A.6 Notes

You need to add the domain you wish to use to your local host
resolution mechanism (hosts file or otherwise).

If you are using an external OpenID source (such as Yahoo!) can
you still use zinlogin? (I need to check this and document the
result).

More environment options may exist for things like dynamo
and s3 storage

There should be something to configure the content store.

Page 9

B zinlogin command

During development, especially for automated testing, it is often
inconvenient to deal with the necessities of logging in; however,
Ziniki is designed to function almost exclusively with registered
users. Thus the zinlogin command allows users to automate
the login process for a development server. This script does not
work with live servers.

The zinlogin script takes two parameters:

It is necessary to specify the URI of the Ziniki admin server.
When Ziniki starts up it shows this information to the trace file
at INFO level, but in general it will be
https://ziniki.<domain>:<adminPort>/. For example, the
admin port for the default domain.test configuration would be
https://ziniki.domain.test:18083/.

This is the ID URI of the user to be logged in, for example, the
firstUser entry in the environment file.

Page 10



C ziniki-cert command

In order to use TLS effectively, it is necessary to generate
certificates. ziniki-cert enables users to generate (free,
unlimited) certificates for local use using a private CA whose
root certificate can be added to common browsers (Chrome,
Firefox, etc). These can also be shared with other users.

None of this is intended to be secure or for production use. It is
suitable for use by individual developers or development teams
on internal networks with test data.

The ziniki-cert command operates in the Ziniki installation
directory, and creates files under the keys subdirectory; if that is
not present, it creates it.

The first time you run ziniki-cert in an installation, it will
create a root certificate, along with a new, private key. This
certificate, called rootCA.pem, is the one you need to install and
distribute in order to avoid having browser errors. Installing
certificates is beyond the scope of this manual, and depends on
browser, operating system and version, but is supported in all
major browsers on all major operating systems.

The only required option is the domain name for which you
wish to create a certificate. ziniki-cert automatically
generates a wildcard certificate (since it wants to use
ziniki.<domain>, wsapi.<domain> and possibly id.<domain>

and auth.<domain>), so you only need to specify the

base domain name, such as domain.test$.

By default, the certificate is issued with the IP address 127.0.0.1;
it is possible to specify an alternative address, particularly if you
are going to be using the certificate on a team server to be
accessed remotely (or if you want to test mobile devices).

By default, the very secure password "password" is used to
encrypt the keystore. Since it is assumed that all of this is just to
enable TLS on an internal system, there is no concern about
security or fraud here. However, if you wish to use another
password for some reason, it is possible to change it using this
option.

Page 12


