
1 Introduction

Programming is hard. Programming for the web may be
harder. And none of it is made any easier by the tools at our
disposal.

FLAS and Ziniki are a systematic attempt to solve many of these
problems. There will always remain an essential core of
programming (what do you want and what will you call it?)
that will remain complex, but FLAS and Ziniki are designed to
strip away as much of the inessential complexity as possible.

Web applications consist of three separate entities:

• visual elements usually presented in HTML and CSS;
• browser-side code written in JavaScript;
• server-side services written in a variety of languages.

Among the problems encountered by web programmers on a
daily basis are: the overlap and intermingling (quite often, it
seems, intentional) between the visual presentation and
browser-side code; the duplication of code on client and server
sides because it cannot be effectively shared; a large body of
code aimed exclusively at connecting client and server sides; a
similar amount of code required to communicate knowledge
between client and server; and a significant amount of
"boilerplate" code needed to repeat patterns - particularly
between applications. All of this complexity pushes exciting,
user-friendly features - such as continuous state updates and
notifications - onto the "nice to have" list.

FLAS and Ziniki address these problems systematically.

• There is a clear separation of concerns: visual elements
are delivered in HTML and CSS; the FLAS compiler
scans the HTML to build a model of these and then
allows them to be addressed in constructing template
models in the program, written in FLAS.

• Code can be easily shared between client and server
because it is all written in the same programming
language, FLAS; distinct constructs exist to create code
which is specific to the client or server environment.

Page 2

• The Ziniki environment contains a peer-to-peer
connector (subsuming the normal client-server
relationship) which automatically handles all
communication; the notion of message passing is built
into the bedrock of the FLAS/Ziniki programming
model.

• Changes anywhere in the distributed Ziniki environment
are automatically detected and passed to all interested
parties. Internally, the FLAS runtime is able to update
client displays with little or no code intervention (the
little is handling conflict resolution).

• Ziniki inherently knows about concepts such as users,
logins, security, access, privacy, sharing, money, deals,
analytics and so on. It automatically handles as much as
is possible without programmer intervention. When
programmer intervention is required, we claim that the
right access points exist to make the intervention as
smooth and easy as possible.

Although complementary, FLAS and Ziniki are separate things:
it is possible to write web applications in FLAS without using
Ziniki. This guide describes FLAS programming completely
independently of the Ziniki network.

In addition, we consider FLAS to be a modern, agile
programming language:

• it natively supports unit and system tests;
• it is strongly typed, but uses type inference and supports

the Any type for simplicity and flexibility;
• it is a lazy functional language from the ground up;
• it produces code for the web, server applications and

Android-compatible mobile applications.

Page 3

1.1 Organization of this Guide

This developer guide is presented as a series of challenges to be
overcome. Each chapter presents a challenge, the approach
taken to solve it, the resulting HTML, CSS and FLAS code and
then adds some commentary on the language and its features.

As is typical with programming languages, Chapter 1 describes
a very simple "hello, world" application. As with all such toys,
it is mainly about getting you in a position where you can be
confident that you have met the prerequisites and understand
the toolset before trying to understand the language itself.

Chapter 2 introduces the actor model and how cards can be
created to store state and respond to user events, seamlessly
updating the display.

Chapter 3 extends this by showing how the state can be used to
control the styling and interact with CSS.

Chapter 4 puts a lot of this together to build a gadget that
supports a "polymorphic tree" - a tree with multiple different
types of nodes and leaves - and handles expanding and
contracting the branches.

Chapter 5 attempts to demonstrate that it is possible to build
something that most people would agree was a complete web
application without getting into the complexities of needing a
server: a fully-functional game of patience (or solitaire).
Approximately 400 lines of FLAS code combine with 50 lines of
HTML and 150 of CSS (including blank lines) to make a
complete, standalone, web game.

The samples can all be downloaded from GitHub and can be
run directly from the web.

Page 4

1.2 Prerequisites

The FLAS compiler is written in Java. In order to use FLAS, you
must have a Java runtime - at least version 11 - installed. A Java
Development Kit (JDK) is not required. Obviously, you must
also download and install the latest FLAS compiler.

Because everything in this guide is about web applications, you
must have a browser installed. While everything in FLAS is
intended to be 100% HTML5 compliant, we develop with
Chrome and recommend that environment. Obviously, where
possible, applications should be tested across an array of
environments.

While we claim that FLAS will reduce much of the inessential
complexity of programming, it cannot remove the fundamental
complexity that is programming. We assume that you are
familiar with the concepts of programming and at least have
some limited exposure to web programming, probably in
JavaScript.

Because FLAS builds on HTML and CSS, some familiarity with
these technologies is required. However, detailed knowledge -
or the ability to write them by hand - most certainly is not.
FLAS takes a "bring-your-own-HTML" approach to building
web applications and any design tool that spits out HTML and
CSS and allows you to customize the ids of the HTML elements
can be used to construct the web input to FLAS. The simple
examples shown in this book were all written by hand -
precisely to keep them simple. When building serious web
applications, we use - and recommend - WebFlow.

1.3 Other Reading

FLAS Reference GuideZiniki manualsWebFlowThere should be
a guide to the Expenses Demo

Page 5

2 Hello, World

While we are not certain exactly where the tradition began, ever
since Kernighan and Ritchie published "The C Programming
Language" in 1978, it has been traditional to start every
programming language text with a simple "Hello, World"
program. Who are we to break this tradition?

Our "Hello, World" program consists of three parts:

• the HTML needed to render a greeting;
• the FLAS Card which amounts to a "program";
• a small "assembly" file which tells the compiler how to

build a web application from the parts.

2.1 HTML

There is a limit to how trivial an HTML file is allowed to
become. According to the specification it must have an HTML
container, a head and a body. Aside from that, this HTML
consists of a pair of nested divs, one to hold the overall
"application" and one to hold the "greeting" itself.

<html>
<head>
</head>
<body>
 <div id='flas-card-message'>
 <div id='flas-content-message-area'></div>
 </div>
</body>
</html>

The important things to note here are the id specifications on
the div elements. Each id must be unique within an HTML
document; when present, FLAS uses these in the input
document to identify the role that the element will play in the
application. The rules by which this works are somewhat
complexand are described in the reference manual.

Page 6

2.2 FLAS

The FLAS code builds on the HTML by defining a Card which
finds the appropriate div and placing the 'hello, world' greeting
in it.

In line with tradition, we start with a simple 'hello,
 world' program.

In this case, we have a card which can display a message
 and populate that with
"hello, world".

 card Hello
 template message
 message-area <- 'hello, world'

2.3 Assembly File

We tried very hard to avoid all kinds of artificial packaging files
and steps common in other programming environments where
they have generally been added as an afterthought, but at the
end of the day there is some information which does describe
how the application is "assembled" rather than what the
application "is". This, very limited, information needs to be
placed in an assembly file.

 application
 title "Hello, World"
 routes
 main <- Hello

Basically, an HTML application needs to know two things: what
title should I put on the window or tab displaying this
application; and which card (of the potentially many you have
given me) should I treat as the "main" one? These are the
questions answered in this assembly file.

Page 7

2.4 Compiling and running the program

Before you can run this program, you need to compile it. Before
you can compile it, you need a compiler.

Compiler packages can be downloaded from
www.ziniki.org/downloads, although currently the compiler
package is only available for MacOS and Linux1 The download
is in the form of a zip which you need to unpack to a directory
somewhere on your computer and has nested bin, lib and
flascklib subdirectories. You should then ensure that the
compiler is on your PATH. As noted in the introduction, running
the compiler also depends on you having Java installed.

All of the samples described in this manual are available on
github at github.com/zinikiGareth/zinikiDemos.

If you use eclipse, you can install a plugin from the Ziniki P2
repository at not yet available.

Assuming you have done the above, you can change into the
appropriate sample directory

$ cd zinikiDemos/samples/hello

and compile and run the hello sample

flas --web ui org.zinapps.samples.hello --html hello.html --open

and after a little thinking and whirring, "hello, world" should
appear in a new browser window.

1
Although Java is essentially cross-platform, FLAS uses the JavaFX library to
run JavaScript unit tests. This library is platform-dependent. The only
obstacle to supporting other platforms is a packaging one.

Page 8

https://www.ziniki.org/downloads
https://github.com/zinikiGareth/zinikiDemos
https://p2.ziniki.org

Commentary

2.1c Bring Your Own HTML

Separation of concerns is a very important part of any
well-structured application. The concerns of visual design and
application development should be kept very separate and
easily maintained independently, with only the minimal loose
coupling between the two2 In embedding this approach within
the FLAS compiler, we gave it a name: "Bring your own HTML".

In most web applications I have worked on, the HTML and the
code are intertwined. This reaches its apogee in languages and
tools such as PHP, ASP and JSP, where the code is literally
written in and around each other. Why do we think this is such
a problem?

Quite simply, programming languages and HTML have tools
that operate on them. If the two are mixed together, the result is
programming language fragments that no longer have static
meaning - the code has to be executed to produce either a
complete set of HTML or a complete set of code - which means
that the tools designed to work on either are useless, making the
developers' jobs more difficult.

Loose coupling is a well-established technique for connecting
two distinct systems that nevertheless need to coordinate their
activities. FLAS uses loose coupling to reference the content of
the HTML files from within a FLAS program.

2
This is not to say that they should be developed independently or by different
teams. In our opinion, the HTML and the application should be delivered
alongside each other, by a single team although it is to be expected that there
will be different specializations on the team. But the team should develop the
two portions independently using the appropriate tools.

Page 9

It does this using the concept of templates. In the popular
model-view-controller (MVC) paradigm for building web
applications, a separation is made between the data (model) and
the presentation (view). In FLAS, the view is constructed
hierarchically of a variety of elements, the two of which we have
seen so far are the card and the template.

Each template in FLAS is introduced with the keyword
template and an identifying name. The loose coupling is
provided by the requirement that the HTML has a
corresponding element with the id flas-card-name. FLAS
automatically extracts and analyzes this element, recording any
nested elements with appropriately named ids. In this
example, there is one nested element, the div
flas-content-message-area. This "content field" is called
message-area and is the one referenced by our program in
setting the content to be "hello, world".

Page 10

3 Actors

In order to handle user interfaces, it is necessary to do more
than just render templates. It is also necessary to manage state
and to handle user events.

In this chapter, we present a simple application which builds
upon "hello, world" to demonstrate how cards can be used as
actors to manage state, handle events and update the UI.

3.1 HTML

Interestingly, the HTML for this chapter is completely
unchanged from the previous chapter. Quite simply, the
template we outlined there is entirely adequate to handle text
that changes.

3.2 FLAS

The Message card builds on what we learnt in the "hello, world"
example by defining a card with a template which presents a
more generic "greeting" and allows this to be toggled between
hello and goodbye.

 card Message
 state
 String greeting <- 'hello'

 template message
 message-area <- greeting

 event switchIt (ClickEvent ce)
 greeting <- newmessage

 newmessage
 | (greeting == "hello") = "goodbye"
 | = "hello"

In FLAS programs, indentation is everything: the initial
indentation of a line must be a number of tabs (not spaces) and
those tabs indicate the indentation level of the line. Lines are
logically "included within" the previous line with one less tab of
indentation. Long lines can be broken by repeating the current
indent level and then indenting (typically two) further spaces.

Page 12

Lines which are not indented at all are considered comments
and ignored, along with blank lines. Additionally, as with C++,
Java, JavaScript and a number of other languages, two
consecutive slash characters (//) cause the rest of the line to be
ignored.

The first line here introduces a card definition. card here is a
keyword and may only appear at the top level (i.e. with exactly
one tab of indentation). The following token is the name of the
card (Message in this case). Card names must start with an
uppercase letter and have at least three characters in their name.

This card has four component elements: a state, a template, an
event handler and a nested1 function definition.

The state of a card is defined by a state declaration. Each
element of the state declaration is indented one further level and
consists of a type, a name and an (optional) initializer. In this
case, the state member greeting is declared to be of type
String and is initially set to the value hello.

The template identifies that the message template in the HTML
file should be selected and that the content area message-area

should be populated with the "current" value of greeting.

switchIt is defined to be an event handler for the click event -
i.e. a boring mouse click. The event object is passed to the
handler as ev, although this is not actually used.

An event handler is an example of a FLAS method. In reality, a
FLAS method is a function that maps input arguments to a list
of messages. However, methods may be given a special syntax
so that it is clearer what is going on. In this case, we use a
simple state assignment to create a message that says "update
the state member greeting to be the value of the function
newmessage".

And finally, newmessage is a function that uses conditional logic
to determine the new value of the message. If the value of
greeting is currently hello, the value is goodbye; otherwise, it
is hello. The upshot of this, of course, is to toggle the message
between hello and goodbye every time the card is clicked.

1
Function definitions may appear at the top level along with cards; however, a
function definition within a card is able to refer to the current state of the card
by simply referring to the state members by name, whereas a global function
definition would need to be passed the state members.

Page 13

3.3 Assembly File

As with the previous example, the assembly file gives the
minimum amount of information necessary to turn what we
already have into a web application.

 application
 title "Toggle Message"
 routes
 main <- Message

Commentary

3.1c Cards and the Actor Model

Returning to the MVC paradigm, we offer the card as the basic
unit of interaction and thus as our candidate for the controller.

It's more complex than that, though. A card is one of three
actors defined by the FLAS language. Actors have a long
history in Computer Science, but their history is often obscure.
They are derived from Simula 67 and formalised in the 1970s.
This work ended up laying the foundation for what we know
today as Object-Oriented Programming. However, as Alan Kay
observed in the 1990s, it would have been better to call it
"message-oriented programming" because the key concept is the
message and how messages are distributed and processed; in
Object-Oriented Programming, too much of the focus is on the
objects and how they stand in relation to each other.

While the obvious modern-day derivative is the
common-or-garden object, an actor should more realistically be
thought of as akin to a microservice: it is something with an
independent lifecycle - its own memory and processing cycle -
that exclusively communicates with the outside world through
message passing in a very strict form. For those familiar with
the concepts of programming languages, an actor exists
essentially in its own virtual machine with its only contact with
the outside world being through message passing.

Page 14

In FLAS, actors follow this paradigm very strictly: in some
instances, actors may even be literally isolated within a
locked-down container (such as an iframe or WebWorker in
JavaScript, or a standalone JVM in Java). In every case,
however, an actor only does work to respond to an incoming
message and responds by issuing a set of messages which have
different side-effects, including updating the actor's internal
state and any visual components. But during the processing of
a message, no state changes happen, no messages are sent, no
more messages may be received: the evaluation context is
purely functional.

There are many possible sources for messages within FLAS;
over the course of this guide we will come across a number of
them. In this chapter, we looked at the UI Event message: all UI
events in a FLAS application are directed to the card that owns
the screen real estate where they happened. Some complex
events (such as drag-and-drop) may involve multiple cards, but
do so through message passing.

At the start of the message processing loop, all the state
members have a particular value: the first time through the loop
it is the value they were initialized with (or else they are simply
uninitialized); for subsequent messages, the state members have
the value they were left with after the previous message was
processed. These values remain unchanged during the
processing of the message but may be updated after the
message has been processed.

In this example, switchIt requests that greeting be updated
with a new value. But there is no need to consider which value
of greeting is to be considered at any point during processing:
whenever it is referenced (as it is in newmessage) it will always
have the value that it had when the message arrived.

Contrariwise, when considering the template, the value used for
greeting will be the value after all the assignments have taken
place. It is reasonable to look on message processing as a
five-step process as follows:

• a message arrives;
• the appropriate handler is dispatched, which returns a

list of "response" messages;
• the messages are processed, including updating local

state and sending messages to remote actors;

Page 15

• the templates are re-evaluated to determine the new
contents of the display;

• the UI is updated accordingly, including changing any
event handlers.

3.2c Event Handlers

Event handlers are methods which react to user interface events.

As stated above, a method is essentially a function that
transforms input into output.

Event handlers are a little bit special in the way in which they
are invoked, however. Event handling is innate to UI
processing. When a FLAS application sees a UI event it has to
handle it in some way. One option, of course, is to ignore the
event: this is what happens whenever no handler is defined for
the event.

But unlike most messages, very little information is conveyed
along with an event: maybe a mouse position or button setting,
maybe the key pressed on the keyboard. In light of this, every
event handler looks alike: they all accept exactly one argument
which is some kind of event.

It is possible, as we shall see in Chapter 4, to bind events to
specific portions of the UI and have them respond
appropriately; however, by default an event handler responds
to the event anywhere on the card.

3.3c Functions

Functions in FLAS are essentially the same as those in standard
functional programming languages such as Haskell. They are
pure, lazily-evaluated mappings from input parameters to a
single output value.

Functions may be specified in multiple parts using pattern
matching and then each part may be broken down into
conditional cases as we have done here. In every case, only one
of the expressions on the right hand side (after the =) will be
evaluated.

Page 16

Lazy evaluation means that once an expression has been
selected, the expression itself is returned as the value of the
function, unevaluated. Expressions are only evaluated when
the actual value is required. This makes it easy and pleasant to
handle infinite and cyclic data structures where only part of the
value will be traversed. For more information, see any
introductory text on functional programming languages.

In FLAS, two things drive evaluation:

• pattern matching in function declarations;
• storing values in state or sending them as part of

messages.

When passing an expression to another function, it is generally
head evaluated: that is, enough of the structure is determined to
see which pattern it matches (if any). In some cases -
particularly with builtin functions, but also with patterns such
as Number, String or constants, it is necessary to completely
evaluate an expression in order to determine if it matches the
pattern.

When storing values (or passing them off as messages, which is
much the same thing), it is necessary to fully evaluate an
expression (although cycles may sometimes still be acceptable).
As much as anything, this is a design choice which reflects the
desire to make message processing atomic and transactional: if
evaluation could be deferred, "your" errors could show up later
while processing a different message.

3.4c State Member Initialization

When initializers are provided for state members, these are
evaluated before the card is truly created. Consequently, they
cannot reference the state of other members, nor can they obtain
access to the outside world. However, there are other
mechanisms (such as the Lifecycle contract we will use in
Chapter 5) by which it is possible to defer initialization
until later in the cycle when more information is available. This
is particularly relevant when using Ziniki microservices.

Page 17

It is, however, perfectly acceptable to simply not initialize fields.
If a field is referenced when uninitialized, an error will result
but, errors being values like anything else, this will not cause
the actor to fail, per se, although it is improbable that desirable
results will follow. As with any programming language, you
need to be aware of the possible states your actors can be in and
what actions are valid in the current state.

Page 18

4 Styling

For the past twenty years, a key to developing effective websites
and web applications has been the recognition of the separation
of content and styling, colloquially referred to as the "html/css
divide". HTML provides the content; CSS provides the styling.
In a number of ways, this separation reflects and informs the
separation of concerns in FLAS between web design and
application code.

While providing an abstraction over it, FLAS assumes a styling
model consistent with HTML and CSS; that is, it assumes that
each card is made up of a set of elements, or areas, each of
which can be individually styled using an abstract mechanism
entirely consistent with CSS classes. In other words, FLAS
knows absolutely nothing about the real-world concerns of
fonts, colors or layout, but it supports a "code book" of terms
which it assumes can be converted into those concerns. On the
FLAS side, these are simple strings; on the web design1 side,
these are CSS class names.

The CSS is written in the usual way: as a set of styles applied
when certain elements are associated with certain classes. While
the two sides have their separate concerns, they are loosely
coupled through the names of the elements and the names of
the classes.

This example builds on the previous example by taking a simple
message and providing three buttons which allow it to be styled:

• By default, the message is "normal size" and black;
• Bold always makes the message "large size" and red;
• Red toggles whether the message is black or red;
• Big toggles the size of the message.

1
This chapter describes styling from the perspective of web applications; in
part, the abstraction exists precisely because there are alternatives with
natively-rendered Mobile Application Frameworks. However, these are
beyond the scope of this guide.

Page 20

4.1 HTML

This HTML is, understandably, considerably more complex
than the previous HTML. In the header it links to a CSS file
(described in the next section) and the card contains a message
and three buttons.

<html>
<head>
 <link rel='stylesheet' type='text/css' href='styling.css'

>
</head>
<body>
 <div id='flas-card-page'>
 <input type='button' id='flas-style-bold' value

='Bold'></input>
 <input type='button' id='flas-style-red' value

='Red'></input>
 <input type='button' id='flas-style-big' value

='Big'></input>
 <div id='flas-style-display'>hello, world</div

>
 </div>
</body>
</html>

In the head portion, the link is a perfectly normal link to a
perfectly normal spreadsheet. Note that this directive is not
relevant to the FLAS system: it pulls the CSS files directly from
the ui directory and includes them. It is your responsibility to
make sure that they are consistent when all included at the same
time.

As with the previous cards, the body defines one card which has
the name page. Within this are three buttons, each of which has
a unique identifier starting with flas-style-. This prefix tells
the compiler that this element may be styled and have events
added to it, but its content is not to be touched. Finally, there is
a display element, which contains the usual "hello, world"
message, waiting to be styled.

Page 21

4.2 CSS

Hopefully, this CSS is sufficiently simple that no real
explanation is required.

.big {
font-size: x-large;
}
.red {
color: red;
}

Essentially, elements that have the class "big" will have their text
made larger; elements that have the class "red" will have their
foreground color made red.

Just in case there might be any confusion, let's be clear that the
names "big" and "red" have no significance whatsoever; they are
merely coupling between the code, the CSS file and the HTML.

4.3 FLAS

Although the only truly new concept here is styling, this
example feels like a step change from the previous two, so we
are going to work through the example code step by step.

At the top level, the card is defined and called Styling. It has
two state variables - both Boolean values - which are initially
set to False. The idea is that they control (independently)
whether the message is big, and whether it is red.

 card Styling
 state
 Boolean wantBig <- False
 Boolean wantRed <- False

 ...

We can then control the display of the message by attaching the
styles (or classes in CSS) to it depending on these values. We do
this by first identifying a coupling to an HTML element by
name: in this case display identifies the HTML element with
the id flas-style-display - in other words, the message.

Page 22

We then apply two conditional styling rules to it. In FLAS, all
styling rules are, in fact, conditional, but the conditional may be
specified as True - or simply omitted - in order to make the
condition apply in all cases.

In this case, each of our two rules uses one of the boolean
variables defined in the state to select the corresponding style -
simply a string - and apply it to the element. FLAS takes care of
combining all the various selections into a single class
specification for the element.

 card Styling
 ...
 template page
 display
 | wantBig => 'big'
 | wantRed => 'red'
 ...

The rest of the template consists of attaching event handlers to
the button elements. Again, loose coupling is used to identify
the elements in the HTML and then, for each one, an event
handler binding is specified. This limits the target area of the
event handler to this specific element in the card.

 card Styling
 ...
 template page
 ...
 bold
 => makeBold
 big
 => makeBig
 red
 => makeRed

 ...

Once the template is defined, we can finish up by defining the
event handlers themselves, much as we did in the last chapter.

makeBold always makes both wantBig and wantRed to be True,
thus ensuring that every time this event handler is called, the
text will be big and red.

Page 23

makeBig inverts the value of wantBig, so that if the text was big
before, it will become normal size; if it was normal before, it will
become big.

makeRed works in the same way as wantBig, inverting the value
of wantRed and toggling between red and black.

 card Styling
 ...
 event makeBold (ClickEvent e)
 wantBig <- True
 wantRed <- True

 event makeBig (ClickEvent e)
 wantBig <- !wantBig

 event makeRed (ClickEvent e)
 wantRed <- !wantRed

Commentary

4.1c Styling

It is hard to overstate the importance of styling in web design.
Even the simplest HTML template can be transformed by the
appropriate styling. While this example is overly simplistic, we
will build towards examples where, even with handwritten
HTML and CSS, it is possible to see that bare HTML can be
transformed through styling.

It is vitally important, then, that FLAS supports the full power
of CSS, but without the overhead of managing the complexity.
It does this by repeatedly and consistently applying the
techniques of loose coupling, separation of concerns, abstraction
and avoidance of repetition,

Page 24

The main abstraction in styling is the notion of the class. Many
things which are possible in CSS are not supported by FLAS -
styling on absolute elements defined by id, for example. The
reasons for this are largely technical - in a card-based
environment, it is not reasonable to assume that any id that you
would specify would be unique - but there is a more important,
philosophical, point here too: you do not want to be that tightly
coupled to your styling and your HTML.

It might be argued that FLAS itself requires ids to be specified
in order to obtain its coupling; but those ids are used during the
translation process and not at runtime. The information is
preserved as a data attribute, however, and can be used if
necessary in styling; however, alternative techniques would
generally be preferred.

During the ingesting and translation phase, the input HTML is
scraped and repackaged (the CSS files are passed through and
included untouched). While this has dramatic effects on some
of the content, by and large, apart from removing ids from all
elements, any elements which do not have a id beginning flas-

will be passed through untouched. This means that you can
wrap any FLAS content or style elements in an HTML
element which you can label and style as you wish.

Essentially, styling in FLAS comes down to associating a list of
styles with each element under its control - including the card
itself. This list of styles corresponds to a list of class names in
CSS. From there, all of the styling is handled in the usual way.

Each styling definition is introduced by the condition symbol
(|), followed by an optional condition (which may be any
expression), and then, following the sendto operator (=>), it may
have multiple styles, which may be strings, lists of strings, or
any expression that evaluates to one of these.

Styles may be applied directly to the card (by indenting them
one tab stop under template), to any content or style binding
(as with display in this example) or to a parent style; that is,
styling definitions in FLAS may be nested. A nested styling
definition will only apply if both the parent and nested
conditions apply.

Page 25

4.2c Event Targets

When we used the click event to toggle the message in the last
chapter, we allowed a click anywhere on the card. Given that
the message was the only thing in the card, this made no
difference to specifically requesting the event be on the message.
But to make this example - with three separate buttons and a
message - work, it is necessary to more specifically identify the
targets when the events apply.

As with many other aspects of FLAS, we apply the loose
coupling and avoidance of repetition techniques. Event
handlers are defined in one place on the card, are identified by
the event keyword, and are linked to a specific event by the
(exactly one) parameter that they take. If that event handler is
not mentioned on any template, it is assumed to apply to the
whole card. Otherwise, it applies to exactly the elements which
define it.

Event target definitions are much simpler than styling
definitions, although they may appear in exactly the same set of
places. An event definition consists of the sendto operator (=>)
followed by the name of the event handler.

Because event handlers may be nested within style definitions,
it follows that they may also be conditional; that is, the event
handler will only be bound to the element if the style condition
is true.

Page 26

5 Data

Data is at the heart of complex programs. To better support the
inherent complexity of programs, FLAS attempts to simplify
data handling by offering varied and precise data constructs
(and builtin data types) that avoid developers having to
reinvent the wheel and continually write boilerplate code.
Furthermore, FLAS attempts to simplify development by using
type inference where possible to give all the advantages of both
strong and dynamic typing.

FLAS draws on a number of different underlying technologies,
but core to its essence is functional programming. Because
functional programs do not concern themselves with mutable
state, but rather with values, functional languages typically
have highly expressive mechanisms for describing data.

FLAS offers a number of such structures, but gives them a
(possibly) more familiar terminology and syntax by describing
the two most fundamental data structures as struct and union.
A struct describes a set of values constituting the
cross-product of a set of named, typed fields. A union

represents the set of all values contained in a named set of
struct or union types. The builtin type Any represents the set
of all values.

In common with most functional languages, FLAS then allows
these types to be broken apart by functions through a
mechanism known as pattern matching1 This allows a function
to be specified in parts, each part describing how the function
intends to handle some part of the complete set of input values.
The FLAS compiler analyzes these declarations and identifies
the overlaps and commonalities and comes up with a set of
logic which traverses all the data structures to execute the
correct portion of the function.

Furthermore, the FLAS compiler supports a similar technique
for handling templates and allows values to be "placed" in
content slots in a template, and then goes on to find the
appropriate sub-template to use to render the value.

1
This is very different from the sort of pattern matching which uses regular
expressions and should not be confused with it. If you are likely to be
confused, pretend you have never heard the term pattern matching before and
read on.

Page 28

This example is going to show something which can often be
hard in programming languages and UI toolkits but is
nevertheless quite a common requirement - to show a clickable
tree with different content elements, each of which displays
appropriately.

Let's consider a company that wants to keep track of its
worldwide assets. It has some notion of "Organizational Unit"
which can nest other organization units recursively. We're
going to call this a "Group" within the company and have a
struct to represent that. Along with sub-groups, each Group

can have a number of locations, so the contents of a Group are a
list of a union we will call Item which can either be a Group or
a Location. Finally, each Location has a list of associated
assets.

5.1 HTML

So, what we need to do is describe how to render not just the
overall card - which contains the single top-level Group but also
each of Group, Location and Asset; four templates in all. But
in line with the "bring your own HTML" model (in which the
user delivers HTML files each of which looks like it could be a
page from the web application), we don't expect users to
provide four separate HTML files but the FLAS compiler is
expected to tease apart the relevant definitions from the single
file provided by the user.

The top level of the HTML looks like this:

<html>
<head>
 <link rel='stylesheet' type='text/css' href='polytree.css'

>
</head>
<body>
 <div id='flas-card-top'>
 <div id='flas-container-entries' class='top-table'

>
 ...
 </div>
 </div>
</body>
</html>

Page 29

Aside from the boilerplate that we have seen before, this says
that the top level of the card is a container. In FLAS,
containers have a number of different uses, but essentially this
says that something is going to go here. In ingesting and
tranforming this, the compiler "throws away" the contents of a
container and just leaves this outer div in the card.

Of course, it doesn't completely throw away the contents: it
scans them first for any nested template definitions.

 <div id='flas-container-entries' class='top-table'
>

 <div id='flas-item-group-node' class='group'>
 <span id='flas-content-expander'
 class='expansion-control'>▲
 <div id='flas-content-name'
 class='group-name'>Global</div>
 <div id='flas-container-items'>
 ...
 </div>
 </div>
 </div>

In this case, there is only one element within the container,
although it is perfectly reasonable to contain many. And the
one that is here is going to be "preserved": the id
flas-item-group-node says that this element is an item
template and can be used to generate the HTML for items that
are going to be placed in a container.

The item has three subelements: an expansion control
(flas-content-expander), a display name
(flas-content-name) and a container for any nested trees
(flas-container-items). All three of these are tagged with
FLAS-specific ids, so they will correspond to fields in the
template. As with the container above, during processing
flas-container-items will be cleared and its nested contents
processed and ingested as applicable.

In this case, the container nests a location.

 <div id='flas-container-items'>
 <div id='flas-item-location-node'>
 <span id='flas-content-expander'
 class='expansion-control'>▲
 <div id='flas-content-location'

Page 30

 class='location-name'>Asia</div>
 <div id='flas-container-assets'>
 ...
 </div>
 </div>
 </div>

This looks remarkably similar to the previous item definition.
Indeed, in this case, it would not be an unreasonable choice to
reuse the item template above to show locations as well. But it
will generally be the case that all of the items will be subtly
different and reuse of templates for different data types will
cause confusion if not outright complexity. If you choose to
represent your data with different data types, it makes sense to
have different templates too.

Again, this template "ends" when it reaches the container for
flas-container-assets, but not before scanning it to see if
there are any more nested templates.

 <div id='flas-container-assets'>
 <div id='flas-item-show-asset' class='asset-row'

>
 <div id='flas-content-what'
 class='asset-label'>Offices</div>
 <div id='flas-content-value'
 class='asset-value'>5000</div>
 </div>
 </div>

This template shows the label and value of the asset.

Altogether, this HTML defines four templates (one for the card,
one for a Group, one for a Location and one for an Asset). In
the HTML itself, these are nested one inside the other so that
they appear to be a single web page. But during the ingestion
phase, they are untangled and four separate templates are
recorded and ready to use.

Page 31

5.2 CSS

The CSS for this example is a little larger than previously, but
nothing particularly stellar.

.top-table {
padding: 5px;
}
.group {
margin: 3px 5px 3px 10px;
}
.expansion-control {
width: 1.5em;
font-weight: bold;
}
.group-name {
font-weight: bold;
display: inline-block;
}
.group-table {
padding: 5px;
}
.group-table.contracted {
display: none;
}
.location-name {
display: inline-block;
color: green;
margin-bottom: 5px;
}
.asset-label {
margin: 0px 15px 0px 20px;
width: 80px;
overflow: hidden;
}
.asset-label, .asset-value {
display: inline-block;
}
.asset-table {
padding: 5px;
}
.asset-table.contracted {
display: none;
}

Page 32

Probably of most significance are the
.group-table.contracted and .asset-table.contracted

styles which specify how the contracted elements are elided
from the display: they are hidden by setting their CSS display

style to none.

5.3 FLAS

FLAS allows developers to group their code units largely as
they please. As with all programming languages, good style
and readability generally suggest using separate files for
significant definitions. However, data type definitions in FLAS
are very short - typically 5-10 lines - so it is often common to
group them. In this case, with only one complex definition in
the codebase, everything has been grouped in one file,
polytree.fl.

Data Types

There are three struct definitions, corresponding to the three
basic concepts in our model: Group, Location and Asset.
Hopefully these definitions should be fairly self explanatory.

 struct Group
 Boolean expanded
 String name
 List[Item] items

 struct Location
 Boolean expanded
 String location
 List[Asset] assets

 struct Asset
 String what
 Number value

Each of Group and Location contains a List of nested
elements. The definition specifies a generic type by enclosing
the element type in brackets ([...]).

The list included in Group is a list of Items. An Item is defined
as either a nested Group or a Location using a union:

Page 33

 union Item
 Group
 Location

Note that since a union is simply defining a set of values
including all the values of all its element types, there is no need
to provide a field name on any of these definitions; the type is
enough. Specific values must be extracted from a union using
functional pattern matching.

Card Outline

The card consists of three parts: a state definition, four
template definitions and four event handlers.

 card PolyTree
 state
 ...
 template top
 ...
 template group-node <- (Group g)
 ...
 template location-node <- (Location l)
 ...
 template show-asset
 ...
 event contractGroup (ClickEvent ev)
 ...
 event expandGroup (ClickEvent ev)
 ...
 event contractLocation (ClickEvent ev)
 ...
 event expandLocation (ClickEvent ev)
 ...

Each template has a name which corresponds to one of the
template definitions in the HTML file. It is an error for a
template to be used in FLAS which has not been defined in the
HTML, or to use a template more than once in the same context.

Page 34

State

The state of this card consists of just one variable and should be
short. The fact that it is not comes down to the fact that being
sample code, it promptly loads all the data into the state rather
than fetching it from more persistent storage - such as a
database or web service.

 card PolyTree
 state
 List[Item] items <- [
 Group False "company" [
 Group False "sales" [
 Location False "USA" [
 Asset "Offices" 500000,
 Asset "Cars" 200000,
 Asset "Inventory" 109000
],
 Location False "Europe" [
 Asset "Coffee" 20000,
 Asset "Magazines" 15000
]
],
 Group False "technology" [
 Group False "new" [
 Location False "Palo Alto" [
]
],
 Group False "current" [
],
 Group False "legacy" [
]
],
 Group False "admin" [
 Location False "New York" [
]
]
]
]

 ...

Page 35

This creates a "list" of exactly one item, the top-level
Organizational Unit or Group. Although the code supports a list
of items, only one is provided because that matches my
understanding of how organizations (should) work. But the
code would be perfectly happy to handle a conglomerate with
no central management.

Templates

The card defines a top-level template which uses the template
defined by the HTML element flas-card-top. This has a
single container flas-container-entries, for which there is a
binding. This binding says that the container will be filled with
the elements of the list items.

 card PolyTree
 ...
 template top
 entries <- items

 ...

How does this work? FLAS knows that entries is a container
and that items is a list. It renders each element in the list and
places the result into the container. How does it know how to
render the items in the list? It looks at their type and then tries
to find a "corresponding" definition among the card's templates.

 card PolyTree
 ...
 template group-node <- (Group g)
 expander
 | g.expanded <- '▼'
 => contractGroup
 <- '▲'
 => expandGroup
 name <- g.name
 items <- g.items
 | => 'group-table'
 | !g.expanded => 'contracted'

 template location-node <- (Location l)
 expander
 | l.expanded <- '▼'

Page 36

 => contractLocation
 <- '▲'
 => expandLocation
 location <- l.location
 assets <- l.assets => show-asset
 | => 'asset-table'
 | !l.expanded => 'contracted'

 ...

There is an additional complication. The elements of the items
list are all members of a union, so it is not clear exactly what
type they are; they could be nested Group elements or they
could be Location elements.

FLAS resolves this confusion by allowing the user to define one
template for each member of the union, so long as they are
precise about which type is intended to be covered by the case.
FLAS ensures that all the cases have been covered and that there
is no ambiguity.

As noted when discussing the HTML, these two cases are very
similar; the only real difference being the contained lists. In
each case, there is an expander which is a visual clue as to
whether the node is expanded or contracted and is set based on
the expanded member of the struct.

Clicking on the expander will invoke the appropriate method to
contract or expand the group.

expander is bound conditionally; that is, there are two cases
(more may be specified) which are considered in turn until one
of the conditions evaluates to True. In this case, the second
condition is "default" which means that it will always be True.
For any given binding, only one default is allowed and it must
come last.

The label (name or location) is a simple, non-conditional
binding.

Finally, the nested list is shown. In the Group case it is much the
same as with the top-level card: it puts a list of items in the
items container. But the Location case is different. Because
the Location knows exactly what type its elements are, it can
specifically name the template it wants to use, in this case
show-asset.

Page 37

Finally, each of the lists is styled. In every case, the list is given
the group-table or asset-table style, and then, if the
expanded flag is not set, it is also given the contracted style.
As we saw above, this causes the CSS to not display the table
giving it the "contracted" feel.

The final template shows the name and value of an asset.

 card PolyTree
 ...
 template show-asset
 what <- what
 value <- (show value)

 ...

This is relatively simple compared to the two that have gone
before. Note the use of the fields what and value which seem to
appear randomly. In fact, their type is inferred from the earlier
use of the template - they are fields of the inferred struct Asset.

Event Handlers

Finally, we have the definitions of the event handlers. These
were bound in the templates to enable the expanders to be
clicked to expand and contract the branches of the tree.

 card PolyTree
 ...
 event contractGroup (ClickEvent ev)
 ev.source.expanded <- False
 event expandGroup (ClickEvent ev)
 ev.source.expanded <- True
 event contractLocation (ClickEvent ev)
 ev.source.expanded <- False
 event expandLocation (ClickEvent ev)
 ev.source.expanded <- True

Page 38

These four event handlers are incredibly similar, and could in
fact be replaced by a single one which inverted the value of
ev.source.expanded. They have been listed separately to
increase clarity in this example. Again, your experience will
vary with the tradeoffs you have to make in any given situation.
In every case, ev.source refers back to the struct used to
render the target area that was clicked. A target area, in this
sense means the smallest block rendered by a template in

The upshot of course, is that any time one of these event
handlers is fired, its consequence is to invert the current value of
the appropriate

Commentary

5.1c Card and Item Templates

It may seem that having separate templates for cards and items
is an unnecessary complexity; sadly, it is an essential complexity.

In popular parlance, card is shorthand for "a small area of the
screen that looks separate". In FLAS, they are fundamental
building blocks - actors. Meanwhile, the need to manage "a
small area of the screen" by itself having not gone away, there is
a need for a concept to handle it - the item.

It is possible to nest cards within cards, but in doing so it is
necessary to introduce new actors into the system which, by
definition, must be independent of their parents. There are
significant complexities in doing this to which we will return
ina later chapter. For now, it is simply necessary to note that the
first template referenced in the card definition must be a card

template; all the others must be item templates.

Page 39

5.2c Naming Templates and Handlers

The rules for naming elements in FLAS are somewhat
complicated because of the number of different models that are
coming together in one place. The rules are discussed
thoroughly in the reference manual.

In essence, function, constant and field names in FLAS must
start with a lowercase letter and then contain letters, numbers
and underscores. Type names must start with an uppercase
letter, be at least three characters long, and contain letters,
numbers and underscores. By convention, camelcase is used in
both types of name to indicate the start of a word.

Event handlers are considered functions and so follow this same
rule.

Template elements are different, though. Because template
names are defined in HTML, they follow the HTML naming
convention of lowercase letters with words separated by
hyphens. This obviously applies to both specifying a template
and those occasions when templates are referenced.

5.3c The Template Nesting Chain

A card template needs to be "context free"; that is, it needs to be
able to be rendered with no information other than what can be
found in the state of the card.

This is not true for nested items: each item template is rendered
in a specific context, depending on where it is referenced; it is
the referencing site that defines the context.

Once again, the rules by which this works are quite complex,
but the important point is that it is possible to "inherit" context
variables in a template as well as to acquire the value of a loop
variable. Additional context variables are just listed after the
loop variable (if any).

Context variables are, by default, matched by type, so only one
such variable can be passed for each type. In this sense the
mechanism used by location-node, of explicitly specifying the
template to use is more general, because it allows different
templates to be used for the same item type.

Page 40

More complex situations may also arise, in which case, specific
naming can be used to address them, but that is beyond the
scope of this guide.

When the location-node template specifically references
show-asset, this ensures that the loop-element variable in
show-asset is defined to match the list element type (in this
case Asset). Because the template does not explicitly set a
template nesting chain, it is automatically populated. If
show-asset is referenced on more than one occasion, all of the
references will be checked to ensure that they all specify the
same type.

If the element type is specified, the element must be given a
variable name and this must be used to dereference the fields in
the template. If the element type is not specified, then the field
members can be used directly.

5.4c Event Sources and Traits

A ClickEvent is defined as a struct in a standard way.
However, it is incredibly useful to be able to find the element
which was the "target" for the event. This can be accessed by
referencing the source parameter of the event.

But what type is it? Well, that's tricky and TBH, it's hacked at
the moment, but I have a plan to define "traits" to sort this out.
What you want is for it to be the same as the "element type" that
was used to render the template.

A trait is kind of like an extra thing that gets tacked on to the
struct at compile/reference time that knows because of the
context what's going on.

So you can reference your data item's members as if ev.source
just were that type. Cool, right?

Page 41

6 Objects and the Lifecycle Contract

So far, we have mainly been discussing how FLAS works using
Actors, although we have also seen examples of data types, both
primitives such as String and the more complex data structures
introduced in the last chapter.

But there is a need for something in between - an object that can
combine data and behavior while not providing an independent
lifecycle and maintaining strict functional semantics.

It's the last requirement that makes FLAS objects "feel" very
different from objects in traditional object-oriented languages -
and in this context, even JavaScript might be considered
"traditional".

Consider then, a list of items such as is commonly found in
websites: say a list of message headers in a mail reader; a list of
servers in a cluster; or a list of posts in a forum. Each of these
has some data, together with some controls, such as a "select"
control and a "favorite" control. There are also some operations
- such as delete - which can either operate on individual items
or on all the items that are "currently selected".

We are going to build this using a single card encapsulating
everything you see here with each item represented by a
separate instance of a single object. These objects can be created
or deleted at will

6.1 HTML

As part of the abstraction offered by an object, it knows how to
render itself - possibly in multiple ways - using the same
template-based mechanism used by the card itself. Thus, in
addition to an HTML template for the overall card, we need an
HTML template for the object. But in line with the "bring your
own HTML" model (in which the user delivers HTML which
makes sense by itself), we don't expect users to provide two
separate HTML files; rather, the user provides a single file
which contains one template nested within the other: it is up to
FLAS to figure it out.

At the top level, the HTML looks like this:

Page 42

Note the element with id flas-container-list. When the
compiler ingests this, it will remove all its contents, and then
this will be the "container" into which the object items will be
put.

However, the ingestor looks inside the container, searching for
other templates that it might find. And it finds this one with id

flas-item-header. This identifies the element as a template,
similar, but not identical to a card template. The difference is
simple: it can be used to render complex content within a card,
but cannot be used for a card itself. This is the template that we
will use for the object.

Note that the original HTML may include more headers here,
which look like they are the same as the template. This allows
the input HTML to contain multiple versions of the header line
and to be reviewed as such; but only the first header has the
magic id which tells the compiler to ingest it and use it as a
template - all the others are simply thrown away.

6.2 CSS

6.3 FLAS

Now we need to actually write some code

Headers

This is the cardNeeds a lifecycle handler to create the
objectNeeds the event handler for "delete selected"Needs logic
to handle 'remove an item' from the list

Page 43

SingleHeader

This is the objectNeeds event handler for 'select' and
'favorite'Needs to handle 'delete'

Page 44

7 Bringing It All Together

Having worked through all the building blocks of the basic
FLAS system1 it is now time to put them all together in an
application of reasonable complexity.

We are going to implement a game of Patience (or Solitaire as it
is often called). While the rules often vary, since we are mainly
focused on the didactic task of explaining how to build a web
application, not what to build, we have chosen rules that are
fairly simple to implement. It is left as an exercise to the reader
to improve and adapt the work that we have done. Feel free to
submit branch pull requests with your great ideas.

In short, the game we are going to design has the following
properties:

• It is played with a standard deck of 52 playing cards
which are shuffled before play starts;

• 28 of the cards are dealt out in a right-justified triangle
with 7 columns (called the "tableau");

• The leftmost card in each column is dealt face up; the
others are dealt face down;

• Each row of cards overlaps the row above;
• The remaining cards are placed face down in the top left

corner (the "deck");
• There are five (as yet empty) piles:

• A "discard" pile where cards are placed when turned
over from the deck;

• 4 piles (one for each suit) where the player attempts
to collect the cards in rank order (from A to K) as
they become available;

• On each turn a user may:
• Move any uncovered, face up Ace to start the pile for

that suit;
• Move any uncovered, face up card onto the pile for

its suit providing it is the rank above the top of that
pile;

1
There are, in fact, more building blocks in FLAS but using them effectively
requires a Ziniki back end and that is beyond the scope of this document. For
more information, see the Ziniki Programming Guide and the Ziniki Reference.

Page 46

• Move any entire "run" of face up cards in a single
column to the bottom of another column provided
that the rank of the top card is one less than the rank
of the bottom card in the destination run AND that
these two cards are of opposite colors;

• Move the current card at the top of the discard pile
into the tableau obeying the same rule above for
moving cards within the tableau;

• Turn over the top card in the deck and place it on the
discard pile;

• If the deck is empty, the discard pile may be turned
over to make a new deck;

• The game ends when either all the cards are in the
ranked piles (victory) or no further cards can be moved,
except for endless dealing of the deck into the discard
pile (defeat).

Hopefully, these rules are not too controversial for dedicated
players2 out there. One thing that hopefully is clear at this point
is that although this is a relatively simple game, it is most
certainly not a trivial one. There is quite a lot of what is often
called "business logic" here, as well as all the mechanics of
keeping track of the current game state, displaying it and
reacting to user interactions.

We feel the need to apologize right now for any confusion that
may arise between the use of the word "Card" to describe an
organizational concept in FLAS and the word "card" to describe
an element of this game. While unintentional, it does reflect the
fact that the terminology of FLAS comes from the physical
realm where you can imagine building a UI from a tessellation
of index cards of various sizes.

Unlike previous samples, where we have presented all of the
HTML followed by the FLAS code, this code is sufficiently large
that it makes sense to present it in a more modular form.

2
On the other hand, hopefully the description we have given is not too
confusing for those unfamiliar with the game. For those who are, we would
suggest that you head to samples.zinapps.org/patience and give it a few
rounds to understand how the game is actually played, which will hopefully
clarify the rules.

Page 47

7.1 Outline HTML

<html>
<head>
 <link rel='stylesheet' type='text/css' href='patience.css'

>
</head>
<body>
 <div id='flas-card-patience'>
 <div class='toprow'>
 ...
 </div>
 <div id='flas-content-tableau' class='tableau'

>
 <div id='flas-item-layout'>
 <div id='flas-container-rows'></div>
 </div>
 </div>
 </div>
 ...
</body>
</html>

then present the main card and Lifecycle initializer together
with its constructor and repeater, although I think that is in
Deck, and then present Deck in its entirety ….

Page 48

https://samples.zinapps.org/patience

