
Introduction

Ziniki is many things: a company, an ecosystem, a philosophy, a
microservice container. For the purposes of this guide, we will
try to focus on Ziniki as an ecosystem in which it is possible to
write small units of client-side code - cards - which, embedded
in the ecosystem, can access the services and resources of the
ecosystem without reference to location or scale.

Everything about FLAS is designed with location transparency
in mind: there is, or should be, no difference between the way in
which a card interacts with a local service to how it interacts
with a remote service. At the implementation level, and in
reality, there are differences of course: differences in reliability,
in latency, in cost. But these differences should not be things
that you, as a developer, should be concerned with. As much as
possible the overall Ziniki ecosystem attempts to abstract things
like security and connectivity away from you. You require

that a service is made available; so it is (or is not). Your use of it
proceeds independently of whether it is available or
unavailable, connected or disconnected, local or remote;
determining these things is considered advanced usage.

But from time to time we will address Ziniki the microservice
container. Some of the Ziniki code "leaks" to the client side, but
as much as possible the code is held in a microservice container
which in turn deploys a range of services - some "built in",
others provided by you or third parties - to provide the cloud
services you need to build leading edge applications with
minimal time, effort or bugs.

And, of course, we will not be able to resist talking about Ziniki
the philosophy: separation of concerns, event driven systems,
modular architectures, keeping things simple, infrastructure as
a service and many more.

Page 2

Organization of this Guide

As with the FLAS Developer Guide, this guide is intended to
explain how to build FLAS applications that use Ziniki services
by presenting small examples of how individual challenges can
be tackled.

Prerequisites

In order to use Ziniki effectively, you must use FLAS. It is
assumed that you either have learnt to use FLAS already, or are
learning FLAS and Ziniki together, with all the appropriate
guides and samples to hand.

All the prerequisites for FLAS are prerequisites for using Ziniki.

In order to get any of the samples to work, you will either need
to configure a local, small-scale in-memory/on-disk Ziniki
microservice container or subscribe to a cloud-based Ziniki
provider. Setting up a local server is described in the course of
the "Hello, Ziniki" example.

Other Reading

FLAS Developer and Reference Guides

There should be a guide to the Expenses Demo

Ziniki Reference Manual

Page 3

1 Hello, Ziniki

With a microservice container, it is not quite possible to have the
first example be "Hello, World". That very simple example does
not require any reference to the microservice container and has
already been covered in the FLAS Developer Guide.

Consequently, even the simplest complete Ziniki example is
actually quite complicated and involves - among other things -
starting a microservice container, configuring it with a TLS
certificate, installing the sample and accessing it. On top of that,
because Ziniki is fundamentally intended to be distributed,
cloud-based architecture, we have to bend the truth a little in
order to get everything working locally.

On the upside, once we have done all these things to get a
simple example working, the samples in subsequent chapters
will flow very much more easily. This really is a case of our
infrastructure making "simple" things seem complicated, while
complicated (and even complex) things become relatively
simple.

About the simplest thing that we can do with Ziniki is to store a
personal (to a specific user) counter on Ziniki and have it greet
you the first time you start the application, and then remind you
on subsequent occasions of how many times you have been
greeted in the past.

1.1 Our First Service

When developing FLAS applications, we encountered a couple
of client-side services (Repeater and Ajax). Now we are going
to meet our first server-side service, the data service. The data
service provides functionality analogous to a database (in
particular, a document database such as ObjectStore, Couchbase
or DynamoDB) in which you can start from a well-known "root"
document and then traverse the data store by following links.
We will tackle the increasing complexity of this in subsequent
chapters, but for now we will just consider the simple task of
getting a single, private entry.

 entity AccessCount
 Number accesses

Page 4

 card Hello
 state
 String msg <- ""

 template ziniki-hello
 message <- msg

 requires org.ziniki.DataStore ds

 implements Lifecycle
 ready
 <- ds.my (type AccessCount) -> TrackAccesses

 handler org.ziniki.DataHandler TrackAccesses
 missing
 <- ds.putMy (type AccessCount) (AccessCount

 1)

 value v
 | msg == ""
 msg <- display
 count.accesses <- count.accesses +

 1
 <- ds.put count
 count = cast AccessCount v
 display
 | count.accesses == 1 = "Hello

 From Ziniki"
 | = "Ziniki

 accessed " ++ (show count.accesses)
 ++ " times"

At first sight, this may look intimidating - particularly for a
"hello, world" program. While this is true, it is also the case that
the simplest Ziniki program involves a number of moving parts,
so it is more than just printing hello world - we need to store
and retrieve records from the server.

Page 5

First off, we declare an entity which is the object we are going
to store on the server. An entity is essentially the same as a
struct, except that when stored on the server it is given a
unique identity which means that we can make stronger
statements about whether two entities represent the same thing
than we can with structs - where it is simply a question of
whether they have the same value. This enables us to happily
distribute the entity and be able to describe it, and update it,
uniquely.

 entity AccessCount
 Number accesses

In this case, the entity is there simply to record the number of
times the page has been accessed and so contains a single
number with that value in it.

The basic card consists of a state containing the message we
want to display and a template which binds that into the card
template.

 card Hello
 state
 String msg <- ""

 template ziniki-hello
 message <- msg

Then we move on to the Ziniki specific code. First, we declare
that we want to use the DataStore

 card Hello
 ...
 requires org.ziniki.DataStore ds

This requires directive says that this card depends on a given
service (org.ziniki.DataStore) and wants to be able to use it
by referencing the variable ds. The name of the service must
match a service which is provided; the variable name is an
arbitrary choice from the programmer within the scope of the
card.

 card Hello
 ...

Page 6

 implements Lifecycle
 ready
 <- ds.my (type AccessCount) -> TrackAccesses

The Lifecycle contract is a standard FLAS feature which
enables a card to react to events during its creation and
release.The ready method is called when the card has been fully
set up and all the contract variables (i.e. ds) have been
initialized and are ready to use.

In this case, we send a message to the data store asking for the
current user's copy of the AccessCount object and to have the
current value (and any updates) sent to the TrackAccesses
handler.

The TrackAccesses handler follows the pattern of the
org.ziniki.DataHandler handler contract and has two cases:
one for when the object is not found (missing) and one for
when the value is found or is updated (value).

In the missing case, we know that we have never seen this
object before, so we create a new one, setting the access count to
0.

 card Hello
 ...
 handler org.ziniki.DataHandler TrackAccesses
 missing
 <- ds.putMy (type AccessCount) (AccessCount

 1)

Finally, we need to consider what happens when we receive a
valid update. This actually covers three cases:

• When the object exists and is provided to us in response
to the my message request;

• When the object does not exist, but is created by missing;
• When the object is updated (by us or anyone else).

Page 7

For reasons discussed in the commentary, on this occasion we
want to avoid the third case, so we check before doing anything
else that we have not been through this code before by checking
the value of the msg variable. This is initialized above to be the
empty string (""), so we only take any action if it still has this
value; we will update the msg variable during processing, so
after that it will after a proper message value.

 card Hello
 ...
 handler org.ziniki.DataHandler TrackAccesses
 ...
 value v
 | msg == ""
 msg <- display
 count.accesses <- count.accesses +

 1
 <- ds.put count
 count = cast AccessCount v
 display
 | count.accesses == 1 = "Hello

 From Ziniki"
 | = "Ziniki

 accessed " ++ (show count.accesses)
 ++ " times"

1.2 Unit Tests

Much of the code that you will write, both in simple FLAS and
Ziniki, cannot be tested effectively using unit tests: the tests just
end up being duplicates of the code you have written. On top of
that, FLAS generates much of the boilerplate code that you
need, relieving you of needing to write tests at all.

But from time to time, portions of the code - particularly handler
portions - become complex enough that it is worth checking
what they do. The value handler here is a case in point. The
missing handler simply makes a request; we could check that it
does, indeed, make a request if we wanted, but it is hard to
know what we would be testing.

With the value handler on the other hand, there are a number
of cases we need to consider, based on the initial value of msg
and the value of the AccessCount object passed in. So there are
three unit tests that we have written to handle this.

Page 8

 test that we say hello if this is the first time we
 receive a message

 data Hello hello
 data org.ziniki.DataHandler callback <- TrackAccesses

 hello
 contract callback org.ziniki.DataHandler value

 (AccessCount 1)
 assert (hello.msg)
 "Hello From Ziniki"

This test first creates a Hello card, and then - because it is a unit
test - manually creates an instance of the TrackAccesses
handler. Because this handler exists inside the card - and thus
has access to its state - it is necessary to pass the constructor the
card instance that it should reference (this happens
automatically in real code because of nesting, but obviously that
can't happen in a unit test). The handler is stored in a data value
with the contract type, because that is the only way in which it
can be referenced.

The handler is then called using the contract test construct. In
this case, because it is a handler, the contract name is redundant
but must still be supplied for compatibility reasons. It is the
value method we want to call, and we pass in an AccessCount

entity with the count set to 1, which is what will happen in
response to missing being called.

Finally, we assert that the message in the state is what we were
expecting. We could also check that this turns up where we
expect it in the resulting HTML, but - to me, at least - this is
redundant and duplicative on this occasion.

 test that we provide a count if we have have been
greeted before

 data org.ziniki.DataStore store
 data Hello hello
 data org.ziniki.DataHandler callback <- TrackAccesses

 hello
 expect store put (AccessCount 3)
 contract callback org.ziniki.DataHandler value

 (AccessCount 2)
 assert (hello.msg)
 "Ziniki accessed 2 times"

Page 9

This test is essentially similar to the first. The big difference, of
course, is that we pass in an AccessCount entity with a value of
2, which changes the behavior. More simply, this changes the
message that it is displayed, which is checked at the end.

But in this path through, we also update the entity in the data
store using ds.put. To do this, we need to check that this
message is sent with the correct (updated) value of
AccessCount. To do this, we need to provide a mock instance
of the data store. By creating a data item with the
org.ziniki.DataStore contract, this is automatically wired
into the card when the card is created. Then, before we call the
contract, we add a deliberate expect that the put method will
be called on this with an AccessCount object set to 3.

 test that nothing happens if the greeting has already
 been displayed

 data org.ziniki.DataStore store
 data Hello hello
 shove hello.msg
 "We have been greeted"
 data org.ziniki.DataHandler callback <- TrackAccesses

 hello
 contract callback org.ziniki.DataHandler value

 (AccessCount 2)
 assert (hello.msg)
 "We have been greeted"

The final test handles the case where this specific instance of the
card has already had its greeting. There are two ways of
constructing this test: one would be to go through the logic
twice, thus ensuring that the first call set up the correct
conditions for the second call; the other (which we have
followed) is to directly set the msg field on the card so that it is
in the expected state.

This test first creates the mock data contract and the card, then
"shoves" a message into the card's msg field. It then creates the
handler callback and invokes it in exactly the same way as we
did in the second test. Finally, it checks that the message is
unchanged after this call.

Note that by creating the mock contract - even though we set no
expectations on it - we will cause the test to fail if any methods
are called on it. The default behavior ignores and suppresses all
calls.

Page 10

1.3 System Tests

Compared to Unit Tests, System Tests enable us to work at a
much higher level and confirm that all the components work
together, repeatably and automatically but without having to set
up complex infrastructure or deal with erratic failures. We also
gain a certain amount more control over our components than
we would have if they were located inside remote containers.

Again, unlike Unit Tests, which attempt to be independent and
isolated from the bigger picture, a System Test unfolds as a
story. Each test builds on the previous tests and, once one test
has failed, the remaining tests are abandoned.

System Tests are part of the core FLAS offering, but they come
into their own in more complex environments such as Ziniki.
Ziniki extends the System Test offering by allowing the tests to
configure in-memory Ziniki servers with pre-canned data that
evolves (repeatably) as the test is run.

The configure step of the system test attempts to set up all the
things we need - in this case a Ziniki instance called my.com and
a client with a Hello card. The configure step may fail, but it
should not have any assertions - it is then to put in place the
pieces we need in order to run the test.

 configure
 ziniki "my.com"
 datastore "datafiles"
 user "gareth"
 data Hello hello

The ziniki command within a system test indicates that there
is a Ziniki Server operating on the indicated domain (the
argument to the command, in this case my.com). The indented
block are commands to be directed at this specific server.

Page 11

In order to provide the data service, it is necessary to specify the
datastore subcommand. This takes an argument which is the
directory in which to look for initial configuration files for the
data store. This will be discussed in detail in later chapters. If
the directory does not exist - or is empty - then the data store
starts off essentially uninitialized, with only the minimal
amount of scaffolding elements present (such as domains and
users).

The user subcommand indicates that the given user must exist
and that they are the "current" user in the scope of the test.
Furthermore, it connects the client environment (where cards
will be created) to the Ziniki environment as if this user had
logged on, thus saving the tests from an excessive burden of
boilerplate code.

Then we create a new Hello card using the data command.

Now we can move on to actually testing the card works in the
way we expect. Because Ziniki has been initialized clean, we
can be sure that there are no AccessCount objects in the data
store.

 test we are greeted the first time
 contract hello Lifecycle ready
 assert (hello.msg)
 "Hello From Ziniki"

Our first step is to call the Lifecycle.ready method on the
card. This invokes a full cycle of creation. Internally, the system
test tracks all activity on the card, in Ziniki and communications
between the two and this command does not complete until the
whole system is quiescent. If it takes too long to become
quiescent, the test will fail with a timeout message.

Once the ready process has completed, the message is checked
to ensure that it has the expected value.

Using the Ziniki command, it is possible to prod inside the
internal state of the Ziniki data store. This is not "easy" or
intuitive, and should probably be avoided in general in favor of
testing things that show up in external behaviors. However,
with a sufficiently complex system, it will be simpler to directly
interrogate Ziniki than to test every possible behavior. The
second test step does exactly this.

Page 12

 test a record was created in Ziniki
 ziniki "my.com"
 bind org.ziniki.MyRecord my "my://my.com/org.zinapps.samples.ziniki.hello.AccessCount/test302"
 bind AccessCount curr my.pointsTo
 assert (curr.accesses)
 2

This again uses the ziniki command, identifying the server
serving the my.com domain. From here, we can use the bind
subcommand to extract individual data elements from the
Ziniki data store and introduce them into the test scope for later
evaluation.

The first bind command finds the root reference record for the
AccessCount type for the current user. Surprising as it may
seem that "test302" on the end of the URI is the user identity.
The "my" record is not actually the entity itself (the
AccessCount) but is a reference to it, so the second bind

command is needed to retrieve the actual record by resolving
the pointsTo field of the MyRecord.

The bind command takes three arguments: the type of the entity
to be recovered; a name to give to the recovered entity; and an
expression (constants expressed as String or URI objects) which
can be resolved to the URI of a database entry.

The third step attempts to demonstrate that nothing happens if
the handler is called a second time with the same value.

 test nothing happens if we update the record
 contract hello Lifecycle ready
 assert (hello.msg)
 "Hello From Ziniki"

This asserts that even after the handler is called with a putative
update, the message does not change. This test is something of
a cheat, since in reality the Lifecycle.ready method will never
be called multiple times on a card, but it is not possible to
intercept the handler in a system test in the same way that we
did it on the unit test.

 test a second client gets a different message
 data Hello second
 contract second Lifecycle ready
 assert (second.msg)

Page 13

 "Ziniki accessed 2 times"
 assert (hello.msg)
 "Hello From Ziniki"

Finally, we start up a second Hello client and demonstrate that
it has the messages Ziniki accessed 2 times while the first
card's message remains unchanged.

1.4 Installing Ziniki

Ziniki builds on top of FLAS and so before installing the Ziniki
runtime, you need to have installed a FLAS runtime. The Ziniki
runtime is installed on top of (i.e. in the same directory as) the
FLAS runtime, adding additional libraries, files and scripts.

First, download the latest ziniki.zip file from
the Ziniki Download Page.

Unzip this into the same directory where you placed your FLAS
runtime.

Check it was successful by identifying the existence of the
bin/ziniki script:

$ ls -l bin/ziniki
…

When all this is done, you are in a position to compile the
example (including running its unit and system tests) and run
the example in a local container and access it from a browser.

If you haven't already (when installing FLAS) you want to add
this bin directory to your PATH so that it can be run from
anywhere.

1.5 Compiling Locally

Much of the time while developing, you will just want to
compile locally and run the unit and system tests. Because you
are using Ziniki functionality (such as the data service), you do
need a full Ziniki instance installed locally, but you do not need
to have the Ziniki server running (the compiler will run up mini
Ziniki containers internally as needed).

To compile the code locally and run all the tests, do the
following:

Page 14

https://www.ziniki.org/downloads/latest

$ flas --web ui org.zinapps.samples.ziniki.hello

1.6 Running in a Browser

In order to be able to run Ziniki code in a browser, it is
necessary to start a local microservice container. This is done
using the bin/ziniki script.

It is not possible to run Ziniki directly as localhost. You must
associate Ziniki with a domain for which you can generate or
obtain a TLS certificate in a keystore. Doing this is outside the
scope of this manual.First you must choose a domain that you
want to use. For the purposes of this example, we will use
domain.com.

You must make sure that requests on your machine remain local
for the ziniki subdomain of your chosen domain, so add a line
like this to your /etc/hosts (or equivalent) file:

127.0.0.1 ziniki.domain.com

As a complex piece of software, Ziniki has many options and
can be configured in many ways; in particular, it has to be able
to cope with different Cloud and DataCenter configurations,
along with working with multiple different underlying storage
infrastructures. All of this information is contained in
configuration files, many of which are pre-canned and included
with the distribution in the config/ directory. The Ziniki
script, by default, chooses the appropriate set to run a locally
configured, all-in-memory instance. But there is still the final
configuration which provides information about how the host
should be configured.

This involves you creating a file somewhere on the file system
similar to the domain.com.json file and providing appropriate
values for the options.This example works with the optional
bootstrap.json configuration file to make for simpler
configuration.

$ ziniki --configFile config/local/bootstrap.json
--configFile config/dist/domain.com.json --user
https://ziniki.domain.com:18082/id/domainOwner --import-flim
flim

Page 15

By default, tracing is largely suppressed (except for warning
and errors) when using this script. It is possible to specify
--info or --debug to obtain more detailed tracing information,
and it is possible to specify a properties file for configuring
tracing using --trace=.... For more information, see the
reference manual.

The --user argument helps with the initialization process by
creating the initial domain and the initial user without having to
go through the complicated process of setting up an initial
domain. It automatically creates the domain associated with the
hostname for the user, and then creates a user credential and
identity inside that domain. The user identity must be a URI; in
the general case it can be any URI which identifies a user, but
because we use the hostname portion to identify the domain, it
must be in the domain you want to use.

Ziniki comes with a builtin OpenID authentication mechanism.
With its default configuration, the ID as given here can be used
for authentication, although this mechanism does not actually
create such a user account in the authentication mechanism.
However, if you create a new user with this id (specifically, the
username "owner") through the authentication process, it will
automatically have access to the Ziniki instance.

Because Ziniki runs in the foreground, you will need to open
another terminal window in order to continue with this example.

In the new window, you need to "log in" using the zinlogin
script1

$ zinlogin https://ziniki.domain.com:18083/
https://ziniki.domain.com:18082/id/domainOwner

The first argument here is the URI of the Ziniki admin server.
As configured, that is the same host as the main server but with
a port of 18083. The second argument is the identity URI as
created on the ziniki command line above.

1
The zinlogin script does not go through the authentication process. It simply
tells the Ziniki admin server that you want a login token and then stores it in
the .zintok file in your home directory. While this may appear to be a
security hole, this mechanism only works with the Ziniki admin server, which
is not deployed in production instances.

Page 16

The result of this is to create a .zintok file in your home
directory which can then be read by the flas compiler when it
attempts to connect to Ziniki2

Then you need to compile the sample and load it into Ziniki.
Do this by passing the appropriate value as the --ziniki
argument to the flas command line as you compile the
application:

$ flas --ziniki https://ziniki.domain.com:18080
--web ui org.zinapps.samples.ziniki.hello

When this has completed, the compiled code will have been
stored within the local Ziniki instance, from which it can be
accessed. In your browser, you can now visit

https://ziniki.domain.com:18080/app/org.zinapps.samples.ziniki.hello

In the real world, you would probably configure your web
server to deliver this application through a redirect from some
path served by www.domain.com.

Because this loads the full experience, rather than the
abbreviated test experience, you will need to log in before you
can continue. Ziniki includes support for all OAuth and
OpenID providers, but many of these require that a
pre-established relationship has been configured before they
will cooperate. Your memory-only Ziniki instance will not have
any of these set up3. However, by default, when run from the
command line Ziniki is configured to provide its own
password-based OpenID Provider. This enables you to have a
full login experience managed locally.

Since you already have a user, the easiest way to proceed is to
create a login for that user. Click the "Log In" button presented
on the home screen. Now paste the user credential from above
into the "Other OpenID" box and click "Log In". This will
redirect you through to the authorization server (you should
notice the port has changed). Because you specified a complete
credential, it is able to extract the username and requests you to
enter a password and then press "New User".

2
It should go without saying that there are other ways to create this file in
production environments. This mechanism is provided for ease of local
development, debugging and automation.

3
This is not to say that you couldn't configure it if you wanted to, but doing so
is outside the scope of Ziniki documentation.

Page 17

The Ziniki authorization server does not have precise rules
about what constitutes a password but demands a certain level
of complexity. The more different character sets (letters, cases,
numbers, symbols) that you use, the shorter the password can
be; the longer a password is, the less diverse it needs to be. The
maximum password length is 60 characters. For example, the
password "domainOwner-has-a-password" will meet the
minimum complexity requirements.

Because you are registering a user who is already in the Ziniki
system (created in the startup of the in-memory Ziniki server
above), there is no further registration required. Normally, it is
necessary to configure the default user profile.

And finally you should be greeted.

Refresh the page and you should be told that you have been
greeted two times.

1.7 Full Stack Automated Testing

Once you have configured a standalone Ziniki server on your
local machine, it is much as if you have truly deployed the
application. As we have seen, it is possible to interact with the
application in the browser.

Likewise, it is possible to test this application using technologies
such as Selenium and WebDriverIO. In each case, it is necessary
to configure your tests to start the Ziniki instance, load in the
appropriate applications and then run your tests "in the normal
way". These technologies are outside the scope of this manual
but are supported and used internally as part of our continuous
build process.

In later chapters, we will cover some of the additional
techniques and functionality of the memory-only Ziniki server
that enable you to do such testing more repeatably.

Page 18

Commentary

1.1c The Ziniki DataStore

If all your previous experience of data stores revolves around
relational databases and SQL, the way in which the Ziniki
DataStore behaves will probably seem unusual and
counterintuitive. In this case, you should probably switch your
mental model and think about how programming languages
frequently work.

There are a number of "well known", "named" or "identified"
objects which can be recovered from the service "by name". We
call these roots. Each root is like the root of a tree in a
programming language: it acts as a starting point from which
you can navigate the entire structure.

In this chapter, we have looked at the simplest form of root: for
each user, it is possible to store exactly one object of a specific
type in the store designated as my version of that object. Ziniki
applications operate by having such an object which acts in the
same way as a "home directory dot file" in a desktop
application. The application defines a new type which contains
all the core configuration information for the application (in the
example, the number of times the application has previously
said "hello"). On startup, the application recovers this object. If
the user has never used this application before, then the object
will not be there and the missing method is called, enabling the
application to go into its default configuration flow and store
the resulting object in the data store. On the other hand, if the
object is there, the application can read in the previous
configuration and follow any references to other objects,
wherever they may be.

Page 19

1.2c Entitites

The Ziniki data model is quite complex, particularly around its
security model and constructs. But the basic element of most
data modelling is the entity. In the simplest terms, an entity is
just a struct with an identity.

A struct is just a value, so two structs are equal if and only if
they have the same type and all of the members have the same
value. But for dynamic systems, we need to be able to have
entities whose values change over time. In order to do this, we
need to have a different notion of equality: that the entities have
an identity which is constant, regardless of how the value
changes.

An entity in FLAS is defined to have two additional hidden
fields which are automatically managed and populated by the
system: an id and a version. The id is uniquely assigned by
Ziniki when it first stores the object and the version is a
monotonically increasing value which ensures that each version
of the entity includes all the history of the object.

Because the id is only assigned when Ziniki first stores the
entity, it is important to realize that an entity on construction in
the client behaves much like a struct and it is important to
ensure that you pass it around carefully and do not duplicate it.
Once it has been stored and its identity established, it will only
exist once in the client and will be shared rather than copied.

In this example, and it should be considered a pattern, we create
and dispatch the new entity to Ziniki as quickly as possible, and
then wait for the value to come back from the creation through
the value method before using it to update the display. This
avoids issues with multiple copies of the same entity.

The id of an entity in Ziniki is a URI. In fact, all ids in Ziniki
are URIs. All entities have a scheme of data and their paths
begin with /entity. The host is the domain of the server that
created them. The rest of the path is sufficient to make the
entity ID unique (but may not be unique among all Ziniki ids).

Page 20

1.3c Overview of DataStore Structure

The exact format of the data store depends on the underlying
infrastructure. But the abstract format is of a document
database which resembles a map from URIs to JSON
documents. This, in turn, is wrapped for the benefit of users by
the DataStore contract which uses the concepts of roots, links
and collections to build a representation of a data store akin to a
quiver.

In this chapter we have used one root (the my record) and one
link (from the my record to the entity). The my record is treated
specially by the DataStore - it is a root - but it is nothing special
internally: it is an entity resembling a JSON structure. Along
with its id, it has a single field called pointsTo which is the id
of the entity to be passed to the user. In processing a my request,
the DataStore automatically dereferences this link and
subscribes the user to the referenced object. Internally, the
DataStore also subscribes to the my record and, if it should
change, changes the subscription from the record originally
pointed to, to the record now pointed to. The client is updated
with the new value of the new object, but the fact that the
pointer has changed is not mentioned.

Clients can only communicate over the DataStore protocol.
However, System Tests can look "under the covers" at the actual
contents of the data store. The ziniki bind command
provides this functionality for entities - including my records - as
we saw in the example test.

There is also a ziniki dump command which can be used
within System Tests to show all of the entries in the data store.
Note that because this shows all the entries in the data store,
there will generally be many more than you are expecting, as all
the entries which support the internal security model are
present.

Page 21

The Ziniki DataStore also enforces security, restricting who can
access what elements. This model will be discussed more fully
later, but the my record itself is exclusively available to the
current user; or, put another way, each user has access to their
own set of my records. This does not stop the entity pointed to
being shared, but in general they will not be. Rather, the my
record will point to a private "top-level" object which contains
links to other objects which may be shared.

1.4c Subscriptions

It is a fact of life that things change. As data changes,
applications should respond to those changes and update their
display - automatically.

In normal programming models, this often seems insanely hard
and ends up with multiple flows - one for when you want to
fetch the data, and another for when it changes on you
unexpectedly. Ziniki reverses this model and says that
whenever you ask for something, you always want the most up
to date value, you want to be kept up to date and the most up to
date value will always be sent to the same handler. The FLAS
language and programming model are designed to support this
directly.

In the example, this is used to avoid duplication between the
code in missing and value. The missing logic handles the case
where the object does not exist. Its responsibility is to make it
exist. It then stops. The value is created and populated on the
server, which then turns around and delivers it to the (already
existing) request for the most recent updates. From here the
value logic takes over.

This same rule addresses a number of race conditions. Imagine,
if you will, two clients both starting at the same time. They may
both receive missing events and, in response, attempt to create
a new object. Only one of them can succeed - it is not possible
to create two my records. But, regardless of which of them
succeeds, both will receive the value callback.

Page 22

https://en.wikipedia.org/wiki/Quiver_(mathematics)

On the other hand, in this particular case, because we are trying
to count the number of times the application starts, we have to
be careful not to create an infinite loop by updating the counter
every time we receive a value callback - because every time we
update the value we will receive a new, updated value.

Subscribing to Non-Existent Roots

There is no rule that says you can only subscribe to things that
already exist. By definition, every root has some kind of "name"
- some way of accessing it that is independent of its existence.
So when we subscribe to the my record for our counter, we do
not have any expectation that it exists: indeed, that is why the
missing method exists. But there is no need to implement the
missing method. It would, for example, be perfectly reasonable
to have two applications, one of which is responsible for
generating data and another which is responsible for formatting
it; the former would create the object but the latter would only
consume it. Notwithstanding that, the consumer would be able
to subscribe to the name of the root on startup; when the
generator started and created the object, the consumer would
automatically be notified and could react accordingly.

1.5c Ziniki and Apps

When compiling programs in FLAS without Ziniki, the result is
a directory containing an HTML file and some javascript files.
In addition to the runtime library, each package generates its
own javascript files for the client code, Unit Tests and System
Tests. The HTML file includes all of these in its headers and
then creates the main card.

Ziniki operates in much the same way, except that none of the
files are located on the file system. The HTML is generated on
the fly in response to the query and contains links to all the
assets and JavaScript files which are located in the Ziniki
Content Store.

Page 23

When compiling connected to Ziniki, the compiler first compiles
all the code locally and runs all the tests to ensure that the code
is valid. It then uploads all of the source code into the Content
Store and creates an entity in the Data Store which represents
the structure of the project and contains links to all the Content
Objects. The compiler then asks Ziniki to build and deploy the
code.

Ziniki validates the package structure and again compiles the
code, reading it from the Content Store. Assuming that all the
tests pass, it then stores all the generated assets in the Content
Store and updates the project entity with the appropriate
information before making it available to the system. It can then
be loaded from browser clients.

Each package is versioned and depends on specific versions of
other packages. When loaded and compiled, the code will
always be compiled and linked against the most current
deployed versions of the referenced packages. If these are not
the versions you use locally, this can cause the local compilation
to succeed but the Ziniki compilation to fail. Once deployed,
the code will continue to depend on these exact versions, thus
avoiding any problems with updating software.

The versioning is based on date, so multiple compilations on the
same date (GMT) will cause only the last version to be persisted.
In practice, this is unlikely to be relevant on local, memory-only
instances of Ziniki; and most public instances are configured to
not accept multiple same-day updates.

1.6c Domains and Users

Ziniki depends on the notion of domains in order to segregate
content and servers. We haven't actually used the domain
concept yet (we will talk a lot more about this in the next
chapter), but one way in which domains segregate servers is
that users are allocated on a per-domain basis, that is, each user
is associated with a specific domain.

Page 24

These domains are domains in the very familiar DNS sense. In
short, Ziniki is assuming that in creating a Ziniki domain you
are doing so in order to support an application which will be
provided through or associated with that domain. The Ziniki
server itself then assumes that its requests will be sent to
ziniki.<domain> in the same way that web servers expect to be
called www.<domain>. When processing requests, Ziniki will
look at the HOST specified in the URI, check that it begins with
ziniki. and then use the remainder of the host name as the
domain associated with the request.

In the wild (i.e. when you start making your services public),
Ziniki has to be sure that when you configure a Ziniki server
you have the rights to do so by checking that you also control
the web server for this domain. Again, we will look into this in
more detail in a later chapter. The --domain option on the
ziniki script bypasses this step, so it is not necessary to
configure the actual web server for the requested domain.

For now, the most important thing is that you are able to create
the appropriate entries in the DNS and certify them with a TLS
certificate. The simplest way to do this locally is to edit
/etc/hosts as we indicated above and provide a keystore that
has at least some certificate for the ziniki.<domain> name you
wish to use. Ziniki does not check the validity of the certificate,
so self-signed certificates are fine providing that you have
configured everything else (i.e. your browser) to tolerate them.

1.7c The ziniki Script and the Cloud

As noted above, the ziniki script can be configured to work in
a number of different ways. The definitive information on how
to configure the ziniki script is in the
Ziniki Reference Guide. Although you should look there if
you want full information on how to configure Ziniki, it seems
relevant to say a few things here about configuring Ziniki for
the Cloud.

In addition to configuring Ziniki to work in memory-only
mode, it is possible to use the ziniki script to start a Ziniki
instance running locally but with cloud-based resources.

Page 25

The option --aws configures Ziniki to work with AWS Dynamo
and AWS S3 as data and content storage mechanisms
respectively.

By default, the ziniki script starts five servers concurrently: a
Ziniki server, an ID and Auth server to provide OpenID logins,
a content store and an admin service. It is possible to limit these
by specifying one or more of the following options:

• --id starts the ID server;
• --auth starts the authentication server;
• --ziniki starts the main Ziniki server;

If any of these options are provided, then all the services
mentioned explicitly will be started; while any services not
mentioned will not be started.

It is not possible to start a fully cloud-aware Ziniki instance
using the ziniki script; this is a more advanced process which
may need manual configuration depending on your cloud
environment. However, the Ziniki $standup$ script enables
you to relatively easily configure and deploy Ziniki within an
AWS environment using CloudFormation.

While not all cloud environments are supported directly by
Ziniki, the pluggable architecture and configuration model
means that it is possible to extend Ziniki by implementing the
various interfaces within Ziniki to support more environments
and then to appropriately configure the resulting Ziniki instance.

Custom Ziniki components are outside the scope of this manual.

Page 26

2 A Simple Shared Rating

In our most trivial example in the previous chapter, we did at
least manage to build something that could be deployed to - and
use - the cloud. The information that we kept about the number
of times the user had interacted with Ziniki was stored
persistently in the cloud, but was separate for each individual.
What we want to do next is to allow multiple users to
manipulate a shared object.

We are going to approach this through the metaphor of a simple
thumbs-up/thumbs-down rating card. Each user is shown the
same card backed by the same data object and has the
opportunity to vote "up" or "down" on the service represented
by the card1 The card maintains the overall rating of the service
and displays that to each user.

So, without further ado, let's get to it.

2.1 The Visuals

First off, let's look at the visual component of this card. As you
would expect, it is really quite simple.

<html>
<head>
</head>
<body>
 <div id='flas-card-ratings'>
 Current Rating: <div id='flas-content-current'

></div>
 <div id='flas-style-up'/div>
 <div id='flas-style-down'/div>
 </div>
</body>
</html>

1
As with all our demos, there is a lot missing here from a reasonable solution,
such as the ability to restrict each user to one vote, keep the rating within
bounds (eg. above zero) and express the rating in a user-friendly way (such as
out of five). We will return to some of these issues later.

Page 28

The card is placed in the main div with the id of
flas-card-ratings. This has three elements: a content field
which will display the current rating and two style fields
which are the up and down buttons (we have used UTF-8 emoji
for these). As usual, we have put no effort into styling these but
the usual pattern applies: you can create and include CSS to
your heart's content, and it will be deployed along with the card.

2.2 The Card

As with the previous example, we need an entity to store in the
database to keep track of the current rating value. Even though
this will be shared between many users, the code is just the
same as before.

 entity Rating
 Number value

The idea here is to keep track of the current rating as a single
number: each up or down vote will change this number.

 card Ratings
 state
 Rating rating

 template ratings
 current <- (show rating.value)
 up
 => thumbsUp
 down
 => thumbsDown

 requires org.ziniki.DataStore ds

The basic boilerplate of the card defines a state which will
contain a Rating entity, a template which binds the current
entity value to the current field in the HTML, and attaches an
event handler to each of the emoji, and obtains a handle to the
DataStore service in the variable ds.

 implements Lifecycle
 ready
 <- ds.domain domainName -> OnDomain

Page 29

 domainName = "ratings.com"

When the card is ready to go, it requests a domain given in the
variable domainName. It expects to find the ratings object
attached directly to this domain.

 handler org.ziniki.DataHandler OnDomain
 missing
 <- Debug "There is a mismatched domain

 name somewhere"
 value d
 <- ds.secondaryKey d "ratings" [] -> StoreRatingEntity

If the code has been correctly deployed and set up, then the
domain should be present. If the missing method is ever
called, something has been misconfigured. In many cases, an
entity being missing is merely a hint to create it, but it is not
possible to create a domain from within the code, so we do the
next best thing and respond with a message. By default, if
missing is not implemented, the message is simply ignored,
which is fine in this case, but slightly less clear. In development,
this message will generally be visible (although it may be lost in
other tracing); when deployed in the cloud, the message will
only be visible to administrators.

When we obtain the domain, we attempt to recover the ratings
object by using a secondary key. This is a way of naming items
within a particular domain or arena, and is described in more
detail in the commentary below. This will return the unique
object to be given that name in this domain.

 handler org.ziniki.DataHandler StoreRatingEntity
 missing
 <- Debug "See Chapter 3"
 value r
 rating <- cast Rating r

The missing method in this case is entirely valid, but we don't
want to tackle the complexities of creating and publishing this
item just yet, so we are going to defer that until the next chapter.
Instead, we will pre-populate the database with an appropriate
object, pointed to by the appropriate secondary key. Just to
make sure everything goes smoothly, if the missing method is
called, we log an appropriate error.

Page 30

When we receive back the value that we want, we store it in the
appropriate state variable. As we do this, the display will
automatically update with the current value.

 event thumbsUp (ClickEvent ev)
 rating.value <- rating.value + 1
 <- ds.put rating

 event thumbsDown (ClickEvent ev)
 rating.value <- rating.value - 1
 <- ds.put rating

The two event handlers are both basically the same, adjusting
the (in state) value of the rating and then storing the updated
version of the object back to the data store.

And that's it for the card, given the simplified set of
requirements we are working with.

2.3 The System Test

In our opinion, this code is not complicated enough to need any
Unit Tests. It's not clear what they would test beyond "if you
click the button, it adds 1" which is what it says it does.

But we certainly want to be sure that the code does what we
expect, so a system test is in order. We are going to take
advantage of the storyboard nature of system tests to check that
as we manipulate the card, the data is updated and the card
with it. We will also check that multiple users can collaborate.

 configure
// ziniki domain
 ziniki "ratings.com"
 datastore "datafiles"
 user "gareth"
 data Ratings card
 contract card Lifecycle ready

In setting up this test, we configure the Ziniki embedded test
server to operate on the domain defined in the test case, thus
ensuring that we can change the domain by making the minimal
number of changes.

Page 31

This server is configured to use the datastore and to read files
from the datafiles directory as discussed in the next section. We
are ultimately going to use two users in this test, but for now we
are going to start with a single user "gareth".

To finish the configuration, we create an instance of the Ratings
card and call its Lifecycle.ready method.

 test the initial rating is zero
 assert (card.rating.value)
 0
. match card text current
. 0

Assuming everything has worked successfully, we should now
have recovered the Rating entity from the datastore which,
given the sample data we have set up, should have an initial
rating of zero. Here we test both that the rating is zero and that
this rating is showing in the content area.

 test thumbs up increases the rating
 event card up (ClickEvent)
 assert (card.rating.value)
 1

// TODO: test that the entity is updated in Ziniki

The main thing we want to test is the functioning of the thumbs
up and thumbs down buttons. Here we test that after
simulating a press on the thumbs up button, the rating value
stored on the card is 1.

 test we can currently vote more than once
 event card up (ClickEvent)
 assert (card.rating.value)
 2

Although it is more a bug than a feature, we are currently able
to vote more than once, so we make a test out of it. If we ever
go back and fix this bug, this will give us an easy way in to
drive the new behaviour.

Again, we simulate pressing the thumbs up button and confirm
that the value is now 2.

Page 32

 test thumbs down drops it back to one
 event card down (ClickEvent)
 assert (card.rating.value)
 1

Here we simulate the pressing of the thumbs down button and
then assert that the resulting rating is 1.

 test a second user initially sees the same value
 ziniki "ratings.com"
 user "nelson"
 data Ratings nelsonCard
 contract nelsonCard Lifecycle ready
 assert (nelsonCard.rating.value)
 1
. match nelsonCard text current
. 1

but then they can increase it

 event nelsonCard up (ClickEvent)
. assert (nelsonCard.rating.value)
// TODO: this should be 2 if everything works correctly
// 2
. 1
. match nelsonCard text current
. 1

A key part of this test - indeed, this whole chapter - is the notion
that it is possible to have entities shared between multiple
system users. So now we are going to create a second user - and
have them create their own card - and observe the interactions
between the two.

The first step is to switch the user. The ziniki command
ensures that the specified user - nelson exists in the system and
asserts that any new cards will connect as this user. The next
two steps create a card for this user and initialize it in the same
way as in the configuration step.

Finally, we assert that the card has initialized correctly with the
same rating, both in the entity and on the screen.

The newly created user now simulates pushing the thumbs up
button. This increases the rating to 2, which we test.

Page 33

 test the first user is notified of the change
 assert (card.rating.value)
// TODO: this should be 2 if everything works correctly
// 2
 1
 match card text current
 1

Finally, since this object is shared through the Ziniki server,
when the second user saves their rating (using the ds.put
method), the first user should be notified of the change and
receive the updated value and display it without needing to do
anything.

2.4 Configuring the System Test

In order to be able to defer the creation of the shared entity until
the next chapter, we need to configure this test to have that
object where we need it before the test starts.

When we configure the Ziniki server, we declare the data store
to read the contents of a directory, in this case datafiles. As
we saw in the previous chapter, if this directory does not exist,
then it is simply ignored (although the data store is created and
made available).

The contents of this directory are the hierarchical contents of the
server, separated by domain name.Within each of these
directories are a set of files. Each file corresponds with one
document in the data store. The file extension identifies what
kind of object it is and the name is used as part of the object
identifier.

In this case we have two objects we want to create: one is the
entity itself (entities have the extension .en) and the other is a
secondary key record pointing to the entity.

 type org.zinapps.samples.ziniki.ratings.Rating
 number "value" 0

This file follows a FLAS-like format - using significant
indentation - to define and configure the object.

For an entity, there is only one top level command, which is the
type command. This specifies the (always fully qualified) name
of the type of the object.

Page 34

Within this are the values of the object fields. Each field must be
of an appropriate type and specify a field name as a string and a
value.

In this case, there is only one field - the current rating value -
which is set to the number 0.

This object is stored in the key
data://ratings.com/entity/rating. The scheme (data) and
the first portion of the path (entity) come from the fact that it is
an entity with the .en extension; the domain comes from the
parent directory and the final element of the path is taken from
the object name.

Secondary key catalogues always have the extension .sk, while
their name is the name of the key itself. Inside the file they have
a format that identifies each key in turn and its corresponding
value.

// this file defines the catalogue implicitly by name
// could have fieid <name> for each field
// field "fred"
// field "bert"
// But we don't because there are no fields in this catalogue

// Key is likewise empty because there is nothing more
 to say

 key
 value
 "data://ratings.com/entity/rating"

This is a trivial secondary key because it does not have any
additional fields - there is only one such key in each domain or
arena. As indicated by the comments, if the key catalogue did
have additional fields, they would be specified by the field
top-level command.

Each entry in the catalogue has a pair of key and value. The
key must have the same number of nested field elements as
the catalogue has top level field elements. The value will
always have one string entry which is the id of the entity
referenced by the secondary key.

In this case, there are no field commands either at the top level
or nested within the key. The value is defined to point to the
entity we created earlier.

Page 35

2.5 Compiling the Example

Compiling this example, and deploying to Ziniki, is just like the
previous chapter. Refer to that for details on how to start the
ziniki process and create a simulated login for the compiler to
use.

Compile and deploy using the following command:

$ flas --ziniki https://ziniki.domain.com:18080
--web ui org.zinapps.samples.ziniki.ratings

This should compile smoothly, run through the system test,
upload to the Ziniki server and deploy the application.

2.6 Running in a Browser

Unless you happen to own ratings.com - or you are happy
working with self-signed certificates - you will need to use a
different domain: one for which you do have a certificate (see
the previous chapter for configuring that).

In order to change the domain, you need to change three things:

• the value of the domainName variable in ratings.fl
• the subdirectory of datafiles must have the

appropriate domain name
• the value in the sk file must have the same domain

name as the host name in the URI

As with the system test, until we add the ability to create
Rating entities in the next chapter, we need to configure the
data store with the same initial objects that we used for the
system test.

This is easily done by passing the --datafiles argument to the
ziniki script. Note that this must be done after the initial users
(and their corresponding domains) have been configured using
the --user arguments; the loading process uses the set of
currently configured domains to determine which
subdirectories of the datafiles directories to read, and if a
domain is not configured, the corresponding directories will be
ignored.

Page 36

$ ziniki --configFile config/local/bootstrap.json
--configFile config/dist/domain.com.json --user
https://ziniki.domain.com:18082/id/domainOwner --import-flim
flim --datafiles datafiles

This assumes that the datafiles directory is in the directory in
which the script is invoked, but obviously a more complete path
could be used.

It should now be possible to visit the application by deploying it
as described above, and visiting:

https://ziniki.domain.com:18080/app/org.zinapps.samples.ziniki.hello

As in the previous chapter, this requires you to complete the
login process (creating a login for the new user domainOwner
with a suitable password) and then use the thumbs up and
thumbs down buttons.

To see the multi-user behaviour, it is necessary to access the
card in a separate browser context (it is important that no user
state is shared between the two; a different browser is the
easiest approach). You will then need to log in as a completely
new user, and follow the full registration process.

Once complete, the same rating card - with the most up-to-date
values - should appear. Subsequently, as you interact with
either card, the other should update in real time.

Commentary

2.1c Sharing between Users

In the previous chapter, we created a private object. In this
chapter, we have used a shared object (and in the next chapter
we will see how we create and share objects). Ziniki is (almost)
equally happy working with private and shared objects.

Page 37

All shared objects are stored within a tree-like structure rooted
in a domain. Each domain must be configured through the
administration UI. Within the domain, entities constitute the
leaf nodes, while junction nodes are implemented by arenas
(covered in some later chapter). Access to an entity or an arena
is determined by the immediately containing domain or arena.

2.2c Finding Shared Objects

In the previous chapter, we discussed the my method and how
that enables private entities to be found by type. In this chapter,
we have found a shared entity using two techniques. First, we
used the domain method to find a domain using its name, and
then we used a secondary key to find the unique rating object in
that domain.

A secondary key catalogue is configured with a unique name
and a set of fields. Although the catalogue may appear to be
defined once, when it is attached to an arena it is independent
from all the other instances attached to other arenas.

Each secondary key must have a unique value for a specific
combination of values for the key fields within the same arena
or domain. In our case, there are no field values, so this limits
the number of possible values to just the one - the one we want.
But we could configure this to have one or more fields - such as
the name of a restaurant to rate, as we will see in a later chapter
- and use that to maintain and find multiple Rating entities in
the same domain. But it is worth pointing out that it would be
possible to configure the same secondary key catalogue in a
different domain to support multiple objects (one for each
domain).

Page 38

3 Creating a Shared Object

In the previous chapter, we worked with shared objects, but
deferred the actual creation of such an object. In this chapter,
we are going to enhance the previous example by handling the
case where the requested object turns out to be missing.

3.1 The Code

The visuals, the system test and most of the code is exactly the
same as in the previous chapter.

The first change is in OnDomain. In the previous chapter, we
used the domain directly to create the secondary key.

 handler org.ziniki.DataHandler OnDomain
 missing
 <- Debug "There is a mismatched domain

 name somewhere"
 value d
 <- ds.secondaryKey d "ratings" [] -> StoreRatingEntity

Now, we need to use the domain twice: once to create the
secondary key and once to pass to the handler which will
publish the new entity rating to the domain. Consequently, we
extract it into a variable that can be shared between the two. At
the same time, we cast it to a Domain to improve type checking.

 handler org.ziniki.DataHandler OnDomain
 missing
 <- Debug "There is a mismatched domain

 name somewhere"
 value v
 <- ds.secondaryKey d "ratings" [] -> (StoreRatingEntity

 d)
 d = cast org.ziniki.Domain v

The most significant change is in the StoreRatingEntity. In
the previous chapter, we had merely logged an error when the
missing method was called. Now we want to create a new
object and attach it to our "personal" arena. We also provide a
handler which will receive the object once it has been created.

Page 40

 handler org.ziniki.DataHandler StoreRatingEntity
 (org.ziniki.Domain d)

 missing
 <- ds.attachPersonalArena (Rating 0) ->

 ShareRating d
 value r
 rating <- cast Rating r

The ShareRating handler is new.

 handler org.ziniki.EntityCreated ShareRating (org.ziniki.Domain
 d)

 created e
 <- ds.publish r d ["public"]
 rating <- r
 r = cast Rating e

This handler implements a different contract to the other
handlers we have seen so far, but the created method is
comparable to the value method in the DataHandler contract.
It is, however, not possible for the attachPersonalArena to
return a missing method since it is creating a new object not
searching for an existing one.

The variable r is introduced to provide a type-safe version of
the entity received on creation. This should be essentially the
same object that we passed to attachPersonalArena but it will
have been assigned an id in the same way that the putMy
method assigned an id to the object created in Chapter 1. This
is then immediately assigned to the rating object.

The final step is to publish this entity. Publication1is the process
by which an entity to which you already have access is made
available in a different context. The simplest such operation is
to take an object which is attached to your personal arena and
attach it to a shared arena. Domains are special cases of arenas.

The act of publishing an entity involves specifying the entity,
the arena to which it is to be published and the benches (in that
arena) to which it is attached. Here we specify the entity we
received back, the domain we recovered previously and the
public bench.

1
There is a lot more information about how this works in the commentary and
will be amplified in subsequent chapters.

Page 41

Everything else remains the same.

3.2 Removing the Configuration

Because we are now creating the shared entity, it no longer
needs to be created by default in the datafiles configuration.
Consequently, we have deleted these configuration files.

Commentary

3.1c Arenas and Domains

In the previous chapter, we briefly started to touch on the
subject of shared objects and the primary sharing mechanism in
Ziniki, the arena.

An arena is not dissimilar to a folder or directory in a classic
operating system: it is a way of organizing content and
controlling access to it. Like directories, arenas may be nested.
In the same way, a domain corresponds to the root of such a
directory hierarchy, containing other arenas and entities.

Access to an arena is controlled through the concept of benches.
Each entity in the arena may be attached to one or more of the
benches defined in the arena. Each bench has a specific set of
permissions - actions that can be carried out either on the
attached entities or on the arena itself and its benches - and a set
of personas (each associated with a single identity) who are
granted those permissions.

In this way, the arena, and in particular the benches of an arena,
constitute the central access control mechanism in Ziniki. The
other one that we have met so far is the "personal arena" which
is the same in principle, but only provides access to your own
objects.

Page 42

3.2c Creating Entities

Creating entities is just like creating structs. They are created
within actors using constructor syntax. But then they must be
saved to the data store in some way. One approach (as followed
in Chapter 1) is to save an individual entity as a rooted my

object, which can be recovered by type using the my method. A
second approach, introduced here, is to pass the newly created
entity to the attachPersonalArena method, which ensures that
the entity is assigned a unique ID and attached to the current
user's personal arena, from which it can be recovered by
iteration.

3.3c The Personal Arena

From what we have seen so far, it might seem that the
"personal" arena is very different from the standard, shared
arenas. However, that is largely because everything we have
seen so far have been the points of difference. Otherwise, a
personal arena has almost exactly the same capabilities as a
shared arena.

To clarify, the differences are:

• The personal arena has exactly one bench and no more
can be added;

• That bench has the owning user on it and no other users
may be added;

• The bench has unlimited permissions on all the objects
within it;

• The personal arena may not have any nested arenas.

Technically, objects that are stored with the my/putMy
mechanism are not stored in the personal arena but just in a
personal space which cannot be accessed by other individuals.
If desired, however, the same entity may be later attached to the
personal arena and even published; this is not, however, a
common or recommended usage pattern.

Page 43

3.4c The Owner and Public Benches

Two benches are automatically created for every arena with
pre-defined privileges: the owner bench has all the privileges,
just like the bench in the personal arena and the user creating
the arena is automatically added to it; the public bench has just
the ReadEntity permissions and does not have - and cannot
have - any users specifically added to it, but all users of the
system implicitly have access to any entities or arenas attached
to the public bench.

3.5c Publishing

As noted above, entities are created in "client space" and are
initially not stored in the data store. However, once an object is
created, it may be stored and attached to a user's personal arena.
Once here, it may be published to any shared arena for which
the user has the appropriate permissions.

2
Whether hard or symbolic is not significant for this metaphor. It has some
similarity to both; some features more like one than the other; and some
differences from both.

Page 44

