
Templates

Templates bridge the gap between data and interaction,
providing a means of combining visual display elements with
card or object data.

Template Definitions

Each card may have one or more template definitions.

(90) named-template-definition
::= TEMPLATE template-name

(91) define-template-chain
::= SEND

template-chain-var+
(92) template-chain-var

::= ORB type-name var-name
CRB

Each template definition must have a corresponding visual
element defined.

■

The exact nature of the visual element definitions depends on
the system being targeted. The default is HTML and the visual
elements are defined in standard HTML files annotated with
element ids indicating their role in the system.

These notations are described in appendix§13.

□

The first template definition describes the visual appearance of
the entire card. All subsequent template definitions describe the
visual appearance of a sub-element of the card.

The first definition may not be referenced by any templates.

All other definitions must be referenced by a template before
they are used. These may also be referenced (mutually
recursively) by subsequent definitions.

A template definition consists of a set of bindings indicating how
the data is to be used to prepare the visual elements.

Template Fields

Abstractly, the visual design is reduced to a set of template and
field definitions. There are six kinds of definitions: each
definition must have a name and be of one of these kinds. The
visual design mechanism must have a way of indicating the kind
and name.

Templates

Card Templates are blocks of visual design containing the entire
layout for a card.

Item Templates are blocks of visual design containing the layout
for a compound element within a card.

Containers

A Container is a block of visual design which is capable of
holding zero or more items.

A Punnet is a block of visual design which is capable of holding
zero or more nested cards.

Content

A Content definition is a block whose content is set and styled
by the template mapping. It may also have event handlers
attached.

A Style definition is a block whose content is determined by the
visual designer but whose styling may be determined by the
template mapping and to which event handlers may be attached.

Page 3

Template Bindings

A template binding indicates how the appropriate block of the
template is to be populated.

(93) template-bind ::= template-name SEND
expression
pass-to-template?

| template-name
| template-name

(94) option-template-binds
::= option-template-bind+

default-option-template-bind
?

|
default-option-template-bind

(95) option-template-bind
::= GUARD expression SEND

expression
pass-to-template? EOL

(96) default-option-template-bind
::= SEND expression

pass-to-template? EOL
(97) pass-to-template ::= SENDTO template-name

Bindings are defined by specifying the name of a template field
as a destination and a value to use to configure that field.

A template name may not be used as the field in a binding.

A style field may not be used for binding.

A value bound to a content field must be of type String.

A value bound to a punnet field must be of type Crobag.

Page 4

Template Styling

Styling may be applied to content and style fields only.

(98) template-customization
::= template-style
| template-event

(99) template-style ::= GUARD expression?
SENDTO STRING+

Styles may be applied conditionally or unconditionally.

Conditional styles may be nested. A nested conditional style is
only applied if all the nesting conditions are true.

■

This mechanism does not provide any additional functionality
than would be present without it. However, the ability to nest
conditional styles makes it easier to understand the relations
between styles and removes duplicated conditions.

□

A conditional style consists of a condition and a set of styles.
The condition must be of type Boolean. If it is True, the styles
will be applied and nested blocks considered; otherwise they are
all ignored.

Styles must be of type String or List[String]. Constants and
variables may both be used.

All of the matching and unconditional styles will be reduced to a
single set of styles that will be applied.

Page 5

Template Events

Event handlers may be attached to content and style elements.

(100) template-event ::= SENDTO var-name

The specification of a handler is the SENDTO operator (=>)
followed by the name of the event handler.

Event handlers may be included within conditional styling
blocks. In this case, the event handler is only registered on the
appropriate element if the conditional style is applied.

Commentary

MVC

FLAS uses a variant on the MVC (Model, View, Controller)
pattern. In this pattern, there is a unique source of truth about
data values (the Model), which is the state of the actor. The
templates determine what is shown to the user (the View) by
taking the provided visual elements (usually HTML) and
combining them according to the instructions in the template
and the data in the model. The operations supported by the
actor (contracts and events) constitute the Controller.

The main intent of this design is to present a separation of
concerns. In particular, by having very loose coupling between
the visual elements and the data (a binding, mainly based on
kind and name of slot), it is easy to separate the process of visual
design from the process of coding. This is not an attempt to
introduce silos, but the reality is that these processes are distinct
and have distinct tools.

Page 6

Development Cycle

To facilitate close working of cross-functional teams, FLAS
works hard to make it very easy to reliably, repeatedly and
automatically combine the output of visual design with the
ongoing code development.

The latest version of the visual design is always processed and
analyzed along with the code in every build (including from
IDEs). The visual design may either be presented as a directory
or as a ZIP file.

Commands are offered to directly import from visual design
tools. In particular, it is possible to download the latest version
of the visual design from webflow at the touch of a button inside
VSCode.

A Mental Model

The reference given in this chapter is intentionally concise and
abstract. While formally correct, it may be difficult to
comprehend and apply.

The should be the starting point for developers wishing to learn
how to use templates; however, for reference purposes, this
commentary will offer a concrete understanding of how the
templates are used in practice by reference to the "standard
model" of using templates: HTML and CSS in the web browser.

Templates are automatically extracted from input HTML using a
splitter which is described in an appendix (§13). Each such
template is then provided in the HTML delivered to the client as
an HTML template object in the head section.

In theory at least, such a template may be arbitrarily complex.
Certainly, it may have multiple levels of nesting. However, the
splitting process automatically removes some of the nested
elements (in particular, elements used within content,
container, punnet and also any elements used to define nested
templates). The splitting process identifies these elements using
their id, removes this from all elements and then annotates the
nodes with data-flas- properties so that they can be located at
runtime in JavaScript using query selectors.

Page 7

This means that within the context of a template, each of the
nested elements (except nested templates) identified by a
compliant id is addressable through the template mechanism.

The template mechanism in FLAS is not there to define
templates but to bind the runtime values in the state of a card or
object to the compatible elements (abstractly referred to as fields)
in the template defined in HTML.

In situations where HTML is not being used but rather some
other visualization mechanism, the principle remains the same
but the technology will be different. Consult the appropriate
documentation for your environment.

The template definitions extracted from the visual design are not
specifically attached to, or scoped within, cards in the program.
Rather, a binding is made between each card and the
appropriate templates. This binding is, more or less,
many-to-many: each template in the visual design may be used
by many cards; and each card may use many templates.

Intelligent Redisplay

While the main focus of this feature is the separation of concerns,
it is also important to provide efficient and simple redisplay.

This template mechanism provides the opportunity to move all
of the complex redisplay code from the user and place it in the
system runtime environment.

Wherever possible, the system optimizes the redisplay of items
so as to make the minimal number of changes to the display.
This is beneficial both for efficiency and for the user's visual
experience.

Theoretically, redisplay occurs between each full message cycle
to the card; however, for efficiency reasons, multiple message
cycles may be processed before the display is updated.
However, it is to be expected that the display (and in particular,
event handling) will not be allowed to lag noticeably.

Page 8

Card Templates

Templates are, in reality, a property of cards. While objects
support templates, and it is possible to bind structs, entities and
unions into appropriate template fields, in every case this has to
happen within the context of an overall card.

To put it the other way, cards are a combination of data,
processing, message passing and rendering. The rendering is
handled by applying the card template to the current state of the
card.

There can only be one card template for a given card. This must
be identified by it having the appropriate id in the visual design
(i.e. flas-card-name) and by it being the first template listed in
the card. The card may then define as many other supporting
templates as it wants, but each of these must be referred to at
least once before it is defined.

The only variables that can be referenced within a card template
are the members of the state. Functions and constants at the top
scope of the card or in the global state may also be used.

Content Bindings

The simplest and most common form of binding is the content
binding. This allows a String value in the card to be literally
placed in a specific template field. The value will automatically
undergo any "entitifcation"1 or other encoding process required
by the visual design.

A content binding is expressed using the SEND operator (<-)
indicating that the value on the right is to be sent to the field on
the left. Possibly the simplest such usage would be:

|card Simple

||template show

1
Entitification is the process by which HTML replaces special characters with
the appropriate HTML entitiesto stop them being interpreted as HTML. It is
not possible to use FLAS to inject arbitrary HTML into a template. This would
be both a security and a portability issue.

Page 9

|||hello <- "hello, world"

This places the constant String value "hello world" in the
template identified by flas-card-show in the field identified by
flas-content-hello.

Because all content fields require String values, it is necessary
that non-String values be converted to Strings before binding.
This does not happen by default, but the show function may be
used to do the "default" conversion.

|card Simple

||template show

|||quantity <- show 15

This is obviously not ideal in all cases: dates, for example, will
generally want more tailored conversion (the default for
Instant is to show the number of days that have elapsed since
the beginning of 1970). In these cases, it is the developer's job to
consider the appropriate transformation and use it.

|card Simple

||state

|||Calendar cal

||...

||template show

|||now <- cal.showIsoDate (Instant.now)

The process of initializing the calendar object using the
Lifecycle contract has been elided.

Each field may only be bound once during a template definition.

Page 10

Conditional Bindings

It is also possible to use guarded bindings, analogously to using
guarded equations in function definitions.

In this case, the binding only contains the name of the field to be
bound, and then a nested block includes the binding cases.

For example, it may be desirable to display a specific message
when there are no entries, but otherwise to display a count.

|card Counter

||state

|||List[String] entries

||template showCounts

|||count

|||| | length entries == 0 <- "no entries"

|||| | <- (show (length entries)) ++ "entries"

As seen here, it is possible to end the binding definition with a
single, optional default binding which applies if none of the
preceding guards evaluate to True.

Styling

Both content and style fields may have styling attached to them.
In HTML, this amounts to allowing the class field on an
element to be set to a set of values. These values are determined
by considering all of the possible styling bindings and building a
composite list.

All style applications must be introduced in a nested (indented)
scope.

• Style applications which are indented directly from the
template are applied to the template as a whole (that is,
they are applied to the HTML element associated with
the template itself).

Page 11

• Style applications which are indented from a content or
style binding are applied to the corresponding element
in the template.

• Style applications which are indented from a previous
style application are applied to the same element as the
enclosing application and only if the enclosing
application is also applied.

All values on the right hand side of a styling binding must be of
type String or List[String].

All styling applications are introduced using the GUARD operator
(|) and the styles follow a SENDTO operator (=>).

So, starting from the simplest case again, it is possible to apply
the bold style to an entire template unconditionally.

card Styling

|template message

|| | => "bold"

On a content field, it is written as a nested block within the
binding:

card Styling

|template message

||message <- "hello"

||| | => "bold"

Although it starts to look a little scrappy, it can also be applied to
a conditional nested block:

card Styling

|template message

||state

|||Boolean sayHello

||message

||| | sayHello <- "hello, world"

|||| | => "bold"

||| | <- "goodbye"

Page 12

|||| | => "italic"

■

This is, in fact, why the conditional binding syntax exists.
Without it, it would be simple enough to define a binding to a
function which used guarded equations to deduce the desired
value. But the logic to style each case separately would be
both tortuous and duplicative.

□

It is possible to do the same thing on a styling field:

card Styling

|template message

||styleMe

||| | => "bold"

Note that because a styling field does not have a value to bind,
only the name of the field is written, and no SEND operator is
used.

Conditional Styling

In the same way in which bindings can be applied conditionally,
styles may be applied conditionally. The syntax is essentially
unchanged: a boolean expression is simply inserted in between
the GUARD and SENDTO operators. This expression must be
identifiably of type Boolean and, like the other expressions in
the template code may only depend on state members along
with global constants and functions.

card Styling

|state

||Boolean wantBold

|template message

||styleMe

||| | wantBold => "bold"

Page 13

Note that, unlike guarded equations and content bindings, all of
the cases which match will have their associated styles applied.
Because of this, the order in which the applications are presented
is irrelevant.

It is again possible to provide default style applications which
will be applied in all cases. Again, unlike guarded equations
and conditional bindings, it is possible to present any number of
default style applications and all of them will be applied.

Note that there is no specific syntax for "either this or that". This
is, of course, possible to achieve by using both a condition and
its negation:

card Styling

|state

||Boolean wantBold

|template message

||styleMe

||| | wantBold => "bold"

||| | !wantBold => "quiet"

Nested Conditionals

A style application may contain blocks of style applications.
This has two purposes.

Firstly, it allows applications that are "related" to be written
closely together but on separate lines, making the intent of the
code clearer.

Secondly, because the nested applications are only applied if the
parent application is applied, it makes it possible to unravel
complex conditionals into a block.

For example, it is possible to have a button which can be enabled
or disabled and, if enabled, can be highlighted to indicate that it
has notifications.

card Button

|state

Page 14

||Boolean isActive

||Boolean hasNotifications

|template message

||button

||| | isActive => "enabled"

|||| | hasNotifications => "alert"

Event Affordance

Event handlers are defined in code on the card or the template.
By default, when defined, they are attached to the whole card.
While this is a useful default, it does have the bizarre property of
meaning that attaching them to fields in the template reduces
their area of applicability. However, in general, event handlers
will either be intended to operate at the card level and will not
be attached; or will only be relevant to certain nodes and will
always be attached.

The act of attaching the name of an event handler to a content or
style field is called an affordance because it makes it possible to
invoke the handler from that location. Note that no extra
information is required - or can be provided - because the event
handler already contains the information about the event that it
will handle, and an event handler is invoked as a message, so
only two pieces of information are in scope - the current state of
the card and the event object itself2.

The event affordance is placed in a nested block of either a
content binding or a style application. If it is applied to a
conditional binding or conditional style definition, the event is
only enabled if the containing guards are true.

Adding the affordance simply consists of using the SENDTO (=>)
operator followed by the name of the event handler.

card Event

|template clickHere

2
Although note that, because the event object contains a pointer to the value
being bound, it is possible to customize the handling of the event based on
which affordance was used.

Page 15

||handleMe

|||=> updateMe

|event updateMe (ClickEvent ev)

This event only adds the handler if the button is active:

card Button

|state

||Boolean isActive

||Boolean hasNotifications

|template message

||button

||| | isActive => "enabled"

|||| => updateMe

|||| | hasNotifications => "alert"

|event updateMe (ClickEvent ev)

Object Templates

Object templates may be defined in exactly the same way that
cards do. However, objects may not use templates specifically
identified for cards but most only bind to item templates.

An object definition may define multiple templates, each of
which may reference any of the others. There are no ordering
constraints on object templates. Object templates do not need to
be used.

If an object contains other objects, an object template may bind to
a rendering of one of the nested object's templates.

Page 16

Containers

Containers serve four overlapping roles:

• They allow a level of abstraction and encapsulation by
enabling a separate template to be used to render a
(structured) part of the card's data.

• Extending this, they allow Objects to be responsible for
rendering their state into a particular part of the window.

• They allow Lists and Crobags to render multiple items -
possibly of different types - into a visual list.

• By using punnets it becomes possible to delegate more
completely to other (explicitly or implicitly typed) cards.

Punnets will be considered in the next section. The remainder of
this section simply deals with item containers.

To support containers, additional item templates need to be
provided in the visual design. These must then be bound in the
card using a template definition.

The simplest case is the delegation of the rendering of a struct

into a container using a template.

struct Combo

|String name

|Number count

card Delegated

|template main

||entry <- (Combo "ducks" 22) => combo

|template combo

||item-name <- name

||quantity <- count

Page 17

Here, the main template (which must be a card template) has a
defined container called entry. It is bound to the constant value
Combo "ducks" 22 and this value is formatted using the combo
template. Because of this specific use of the template name, the
template knows (through type inference) that it is being applied
to a struct of type Combo, and thus the names name and count

are in scope - referring to the fields of the struct.

This template can be referenced multiple times within the card,
but on every occasion it must be used to render a struct of the
same type.

Delegating to object templates works in much the same way,
except that the template is nested inside the object rather than in
the parent card.

object Combo

|state

||String name

||Number count

|ctor make (String name) (Number cnt)

||...

|template combo

||item-name <- name

||quantity <- count

card WithObject

|state

||Combo thing

|...

|||thing <- Combo.make "ducks" 22

|template main

||entry <- thing => combo

Here, the object has to be created in a message-method context,
the details of which have been elided.

Page 18

The combo template is on the object, as is the state which it
references. In this case, because the delegation is through the
object, no additional variables are introduced - the references are
to members of the object's state.

Objects may have any number of templates, but they must all be
item templates.

Page 19

Introduction...7

1 Lexical Conventions...9

1.1 Unit Translation Types...9

1.2 Indentation...10

Comments...10

Nesting...11

1.3 Names...12

1.4 Constants...12

1.5 White Space...14

1.6 Punctuation Characters...14

1.7 Symbols and Operators...15

2 Declarations and Scopes...17

2.1 Functions...18

2.2 Data Types...19

2.3 Contracts...19

2.4 Actors...19

2.5 Scoped Names...20

3 Lifecycle...23

3.1 Wiring up...24

3.2 Lifecycle contract...24

$Lifecycle.init$...25

$Lifecycle.load$...25

$Lifecycle.state$...25

$Lifecycle.ready$...25

$Lifecycle.closing$...26

3.1c Containing Environments...27

Browser...27

Phone Apps...27

Microservice Containers...28

Embedded in Applications...28

4 Expressions...29

4.1 Literals...29

Numeric Literals...30

String Literals...30

List Literals...31

Tuples...31

Hash Literals...31

4.2 Function Calls...32

4.3 Unary Operators...32

4.4 Binary Operators...32

4.5 Parenthetical Expressions...33

5 Structs, Entities and Unions...35

5.1 $struct$...35

5.2 $entity$...36

5.3 $union$...36

6 Crobags...37

6.1 API...38

$ctor new$...38

$method put key value$...38

$method insert key value$...38

$method upsert key value$...40

6.1c A Language Feature...41

6.2c Use in Templates...41

Page 21

6.3c Collision Resistance...41

6.4c Client-Side Caching...42

6.5c Natural and Arbitrary Ordering...43

6.6c Favorites...43

6.7c Events...43

6.8c Usage Patterns...44

7 Functions...45

7.1 Pattern Matching...46

7.2 Guarded Equations...47

7.3 Function Nesting...48

7.4 Tuple Definitions...48

7.5 Standalone Methods...49

7.6 Functions with State...49

7.1c Evaluation...49

Pattern Matching...50

Guards...51

7.2c Scoping...52

7.3c Standalone Methods...52

8 Type Checking and Inference...53

8.1 Type Declarations...53

8.2 Type Checking...54

8.3 Type Inference...54

8.4 Overriding the Type Mechanism...54

8.1c Type Inference Algorithm...55

9 Contracts...57

9.1 Contract Methods...57

9.1c Role of Contracts...58

9.2c Directionality...58

9.3c Testing...59

Page 22

10 Objects...61

10.1 Object State...61

10.2 Object Constructors...62

10.3 Object Methods...62

10.4 Services...63

10.5 Nested Scope...63

10.1c Not an Object-Oriented Language...63

11 Methods...65

11.1 Guards...66

11.2 Sending Messages...66

11.3 Updating State...66

11.1c Messages...66

11.2c Conflicts...67

12 Templates...69

12.1 Template Definitions...69

12.2 Template Fields...70

Templates...70

Containers...70

Content...70

12.3 Template Bindings...71

12.4 Template Styling...72

12.5 Template Events...73

12.1c MVC...73

12.2c Development Cycle...74

12.3c A Mental Model...74

12.4c Intelligent Redisplay...75

12.5c Card Templates...76

12.6c Content Bindings...76

Conditional Bindings...78

Page 23

12.7c Styling...78

Conditional Styling...80

Nested Conditionals...81

12.8c Event Affordance...82

12.9c Object Templates...83

12.10c Containers...84

13 HTML Visual Designs...87

Page 24

1 Introduction

Programming languages can be broadly divided into two
categories: general purpose programming languages are
intended to solve a wide array of problems; whereas task
specific programming languages are more finely tuned to the
solution of a narrower class of problems.

Although capable of addressing many problems, FLAS is
unashamedly in the second category. It aims to solve two
problems well, one on either side of the web client/server
divide. On the client side, it aims to provide developers with the
ability to create gorgeous, snappy, reactive applications with
ease; and on the server side it assists them in building the kind of
reactive microservices that underpin those client applications.

Moreover, there is almost no area of programming about which
FLAS is agnostic; it has strong opinions on almost every big
debate in programming. If you don't like that, then you
probably want to go elsewhere. But to avoid later confusion, we
would like to state up front that these are deliberate,
unquestionable opinions baked into FLAS:

• Testing at every level of scale is an absolute imperative
and it will be supported, encouraged and demanded of
FLAS applications.

• Programs should be reactive, tell-don't-ask and should
subscribe to event sources; they should not use getters,
request/response or synchronous technology or the
appearance of synchronicity.

• Logic should be clear, transparent and provable using
functional, declarative semantics.

• The iteration length of any action should be as short as
possible, promoting comprehensibility of code blocks.

• Programs should be strongly typed but with a minimum
of declaration and a maximum of inference.

• Programs should be broken down appropriately
supported by suitable building blocks.

• Programs should be as loosely coupled as possible, and
the language should have all the relevant constructs to
support that.

• Program divisions should, where possible, not be
arbitrary but flow naturally from the information flow in
the system.

FLAS cannot be a general purpose programming language
because it makes too many assumptions about the kinds of
programs - or more specifically, program units that you want to
write. It knows about three basic program units and assumes
that you are working towards one of them:

• Cards support the construction of UI units, combining
data and screen real estate while being connected into a
wider ecosystem through contracts.

• Agents facilitate the coordination of cards by combining
data with a network of connections to cards and services.

• Services support the construction of server-side
microservices, embedded and deployed within Ziniki1

servers.

Supporting these three units are a number of other building
blocks - structs, unions, contracts, objects and tests which
provide the ability to build more general purpose units for
program composition.

FLAS programs are intended to have semantics that are
detached from any implementation language. Currently, it is
possible to generate JavaScript and JVM bytecodes from FLAS,
although technically there is no reason not to generate backends
compatible with iOS, .NET, PHP or any other environment.

1
Technically, since FLAS generates JVM and JS code, services could be deployed
within servers provided by any PAAS provider, but for obvious reasons, we
will only consider FLAS services embedded in Ziniki servers.

Page 27

2 Lexical Conventions

FLAS programs are presented to the compiler as a set of files,
grouped into packages (directories). The directory name is used
as a package prefix for all the definitions provided within that
directory.

For standard program units, the name of the file is not used in
naming FLAS constructs, although it is used to partition test
classes into different subpackages, where a variant of the file
name is used as a nested package within the directory name.

2.1 Unit Translation Types

(1) file ::= source-file
| unit-test-file
| protocol-test-file
| system-test-file

For each file within a package, the file extension is used to
determine how the contents of the file will be interpreted.

• .fl - a standard program unit, which may contain any
normal definitions.

• .ut - a unit test file, containing unit test definitions.
• .pt - a protocol test file, defining tests that can be used to

test the compliance of instances to the expectation of a
contract.

• .st - a system test file, that is capable of simulating
end-to-end system behaviors and asserting their
correctness.

• .fa - an assembly file indicating how a deployable client
or server unit can be built from components in this (and
potentially other) packages.

2.2 Indentation

Within a file, the nesting of definitions is determined by
indentation and context. Significant indentation is provided
using leading tab characters, while continuation lines have the
same number of tab characters as the initial line but additional
space characters to reach the desired continuation point.

■

By convention, FLAS programs are presented with tab stops
set at four spaces, but there is no significance to this. It is
hoped that tools (such as IDEs) will make the distinction
between leading tabs and continuation spaces very clear and
clearly present mismatched indentation as such.

□

Comments

Blank lines, lines beginning with no tabs, and any portion of a
line following two consecutive slash characters (//) are
considered to be comments. For all practical purposes, after
making this determination, comments are ignored by the
compiler. They may, however, be used by other tools for the
purpose of providing documentation or otherwise.

■

Specifically, it is the designers' intent that literate
programming should be supported by tools. To further this,
comments that begin in column zero with no leading slashes
should be considered literate comments. These are the
comments which would be used to construct documentation
and narratives about the code. On the other hand, comments
beginning with a double slash will generally be considered
side-notes by and to developers which are to be ignored by all
tools.

Comments with meta-tags (such as TODO) may at some point be
considered by some tools to be special, but no guidance can be
given at this time in the absence of such tools.

Page 29

□

Nesting

Top-level definitions are identified by having exactly one
leading tab character. Any such definition can be referenced
from any scope using its fully qualified package name and from
within the package using its simple name.

A definition may be nested within another definition provided it
has exactly one more leading tab than the enclosing definition.
The grammar defines which constructs may be nested in which
context.

Some definitions (such as structs) may include sub-definitions
in indented lines which are accessible in expressions which have
first identified the enclosing definition.

Otherwise, nested definitions are not visible from outside the
scope of the enclosing definition.

■

The rules here are varied and complex, but fundamentally
constants, functions and standalone methods are invisible
outside their scope; things like fields and object methods are
visible within the context of a container of the enclosing type;
and things such as conditional definitions are visible as part of
the enclosing definition.

□

■

A further implication of the "one more leading tab" rule is that
each line in a FLAS program must have less, the same or
exactly one more leading tab than the preceding line (ignoring
comment lines).

□

Page 30

2.3 Names

FLAS supports four types of names with different lexical rules:

• variable names and field names must start with a
lowercase letter, followed by an arbitrary number of
lowercase and uppercase letters, digits and underscores.
CamelCase is used to indicate word boundaries.

• type names must start with an uppercase letter, be at
least three characters long, and have the remaining
characters be uppercase and lowercase letters, digits and
underscores. CamelCase is used to indicate word
boundaries.

• polymorphic type variables must be one or two
characters long, the first of which must be an uppercase
letter and the second may be an uppercase letter or a
digit.

• template names must start with a lowercase letter,
followed by an arbitrary number of lowercase and
uppercase letters, digits, hyphens and underscores.
While uppercase letters and underscores are permitted,
lowercase letters and hyphens are generally preferred.
Hyphens are used to indicate word boundaries.

These kinds of names are referenced as appropriate within this
manual.

2.4 Constants

Apart from named type constants, FLAS supports constants of
the builtin primitives:

Page 31

• String constants are indicated by the use of single or
double quotation marks. These may be used
interchangeably to indicate the start of a string, but they
must be used in matched pairs: that is, a string beginning
with a single quotation mark continues until a closing
single quotation mark is encountered; and likewise with
double quotation marks. A terminating quotation mark
may be embedded within a string by placing two
consecutive marks in the string; one will be maintained
and the string will continue.

• Numeric constants are indicated by a sequence of zero or
more digits, followed by a dot (.), followed by zero or
more digits, optionally followed by an exponent symbol (
e, e-, E or E-) and one or more digits. One of the two
mantissa portions must have at least one digit.

Both integer and floating point constants are considered to be of
type Number.

■

FLAS tries to ride two horses with regards to numbers. On the
one hand, it prefers to assume (as does JavaScript) that there is
just one number line and there is nothing really special about
integers; on the other hand, it has to recognize that many
applications (such as array indexing) require integers and it is
not reasonable to just ignore their existence.

Integers are not formally defined in FLAS: the only recognized
number type is Number which roughly equates to the set of real
numbers. However, the implementation frequently resorts to
testing whether a number is an integer before carrying out
integer-only operations.

□

■

There are more builtin, primitive types (such as Instant,
Interval, Currency and Money). However, these do not have
any associated constants but must be constructed using the
appropriate functions.

□

Page 32

2.5 White Space

The issues regarding leading white space have already been
addressed. This section only relates to white space found after
the first non-white-space character and not in a comment.

Within a line, any white space not occurring within a string
constant is considered to end the current token and introduce a
new one. Within a line, multiple consecutive white space
characters are considered equivalent to a single space. Within a
line, all white space characters are considered equivalent.

When a line is continued by starting a new line which begins
with the same number of tabs as the previous line and one or
more non-tab space characters, the compiler internally joins the
lines together, removing any newline (CR and $LF) characters
but preserving any other white space (tabs and spaces) originally
present.

An arbitrary number of continuation lines may be joined
together in this way, all of which must have the same number of
leading tabs; the first of which must have no subsequent white
space; and all the others must have at least one space after the
leading tabs. There is no rule about the relative number of
spaces following the leading tabs - that is left to the developer's
sense of clarity and aesthetics.

2.6 Punctuation Characters

In addition to names and constants, FLAS defines operators and
punctuation characters.

Punctuation characters stand alone and constitute a single
symbol by themselves and may not be combined into larger
symbol characters.

The following characters are punctuation characters

• Parentheses (and)

• Brackets [and]

• Curly brackets { and }

• Comma ,

Page 33

2.7 Symbols and Operators

The remaining characters are considered symbol characters and
may be combined into composite operators. An operator is
either an individual symbol character or a sequence of symbol
characters which have been defined to have meaning as an
operator. Some symbols may also be used in language
constructs.

Currently there is no mechanism by which users can introduce
new operators.

Operators may be used in expressions as well as in other
contexts. They are defined in the appropriate sections where
they are used, along with their precedence (where appropriate).
Where symbol characters need to be placed in distinct operators
which are adjacent to each other, intervening whitespace (or
parentheses) must be used as appropriate.

■

In the long run, it makes sense to allow new, user-defined
operators. These are essentially functions which can be given
arity, precedence and associativity. However, doing so in a
truly extensible way (and supporting concepts such as ternary
operators) is beyond the current scope. Consequently, the set
of operators is currently limited to the builtin operators.

□

Page 34

3 Declarations and Scopes

Within FLAS, many different types of concept can be defined;
furthermore, the language is intended to be extensible so as to
support additional concepts, in particular to support concepts
internal to Ziniki. Each of these concepts has its own declaration
syntax and then supports specific nested content. The details of
these declaration types will constitute much of this manual.

However, these definitions can be broken down into "families"
and an overview of these families will be discussed here.

Most definitions and nested declarations are introduced by a
keyword or key operator; the exceptions are:

• when only one kind of declaration is allowed;
• function definitions.

■

FLAS has been designed from the outset to be a "family" of
languages. The core of the language is the ability to express
functional transformations from state to state in conformance
with the actor model. Anywhere that this model is applicable
represents a potential target domain for FLAS.

In this regard, concepts like "cards" and "services" make sense
in some contexts and not in others; more than that, in
embedding FLAS in the Ziniki context, it is desirable to have
more direct support for defining new concept types such as
storable entities with unique identifiers; offers and deals
between parties and so on. These are not part of the "core"
language.

Similarly, other embedded uses offer other extensions to the
core model, but in all cases the fundamental design of the
language remains the same.

□

(6) top-level-unit ::= top-level-definition
| function-scope-unit

(7) top-level-definition
::= struct-declaration
| union-declaration
| entity-declaration
| envelope-declaration
| wraps-declaration
| contract-declaration
| object-declaration
| service-declaration
| agent-declaration
| card-declaration

(8) function-scope ::= function-scope-unit*
(9) function-scope-unit

::=
function-case-definition

| tuple-definition
|

standalone-method-definition
| handler-definition

3.1 Functions

At heart, FLAS is a functional language, and functions are core
to data manipulation in FLAS. As with most modern functional
languages, FLAS functions are mathematically defined
mappings from domains of values to a range of values. While
not perfectly mathematical, the use of lazy evaluation ensures
that the operational semantics are close to the declared
semantics.

The family of function declarations should be understood to
include standalone and object methods as well as event handlers
and data callback handlers.

Depending on how the function is defined, the immediate nested
members of this family may be conditional cases, which in turn
introduces a scope where functions may be defined. For simple
functions, defined on one line, the immediate nesting level
allows functions to be defined.

Page 37

3.2 Data Types

The family of data type declarations includes struct, union and
object definitions in core FLAS; Ziniki also defines entity,
envelope, deal and offer, along with the entity mapper
declaration wraps. The state of objects and cards can be
considered very similar.

For these types, the immediate nesting level defines fields. Inner
nesting levels allow constraints and metadata to be applied to
the individual fields.

3.3 Contracts

Contracts define an abstract mechanism by which interactions
between cards and services can be defined (similar to interfaces
or protocols in other programming languages). Because they are
simple declarations, they are generally very simple.

One level of nesting is permitted to contracts to define the
individual methods supported by the contract.

3.4 Actors

The family of actors includes agents and cards on the client side
and services within microservice providers.

The top level of nesting within these definitions describes the
individual elements that make up the overall definition. These
inner definitions are defined in the grammar.

Arbitrary function and standalone methods may also be
included at the top level of nesting.Each of these is defined using
a series of blockNested lines may be acceptable nested
definitions; nested declarations must be introduced with a
suitable keyword such as state, template or implements.

Page 38

3.5 Scoped Names

In order to ensure that names are globally unique, the simple
name of any definition is prefixed with the current scope name.

At the top level, the scope name is the package name.

■

The source of test files (.ut, .pt and .st files) are collocated
with the main (.fl) files. However, they do not have
individual names and instead are placed into test-specific
sub-packages of the main package, each of which is given a
name derived from the file name (e.g. _ut_file). Since the test
cases themselves do not have names (just descriptions), the
functions generated for these are given the names ut0, ut1 and
so on.

Placing the tests within separate packages (based on the file
name) ensures the uniqueness of the overall name. Using
underscores in the package and test names ensures that they
cannot clash with names defined with FLAS. These names are
never accessed externally but only by the test runner.

□

Nested definitions use the enclosing definition name as the
scope name.

■

So, for example, if there is a simple struct definition in
package test.my:

struct Thing

String name

the struct will be given the qualified name test.my.Thing
and the field name will have the qualified name
test.my.Thing.name.

□

Page 39

The simple name introduced in a scope must be unique and
must not be defined in any enclosing definition.Function
definitions may, however, be defined in multiple clauses at the
same level provided such definitions are consecutive; this does
not violate this rule because these clauses are combined to form
a single definition.

■

While this most obviously applies to function, type and actor
names, it also applies to other names introduced into the scope
such as parameter, field and type variable names.

For example, in the following definition, the parameter x
conflicts with the enclosed definition of x, creating an
ambiguity and is therefore disallowed:

f x = y

y = 2 * x

x = 14

In the definition of y, which use of x was intended?

□

Page 40

4 Lifecycle

In most programming languages, there is a concept of an
application and some amount of code which is considered to be
"initialization" code, such as a main() method.

In FLAS, there are two components which have a lifecycle: cards
and agents. Other component instances which may be included
within these are initialized by them. In the code, no card is
marked in any way as being responsible for application
initialization.

■

For simplicity, consider a card. It may be embedded within
another card, or it may be started at the top level. Most cards
will have an expectation about which they are going to be, but
in the end, they simply can't tell.

The default runtime container considers the configuration
defined in a .fa file and looks for the main card. This is the
one which it will start at the top level.

However, it is also perfectly reasonable to imagine a situation
in which another website links to an environment which sets
up a card and runs that as if it were at the top level. Providing
all the services are put in place, it is unable to tell the
difference.

□

In Ziniki, services may be considered to have a lifecycle, but
because they do not have state, they also do not implement the
Lifecycle contract.

■

Because services represent multi-threaded microservice
objects, they cannot have independent state and therefore do
not need initialization per se. They do, of course, need to be
instantiated and connected to other services using the
requires construct but this is handled invisibly.

□

4.1 Wiring up

When a card or agent is first created, its storage is created and
any state initializers are evaluated.

Any services it requests through requires directives are located
and handles provided.

Services which cannot be found are initialized to appropriate
NoSuchService services.

■

A NoSuchService service handles all of the requests for the
service but never responds. It does, however, report on the
system log that an appropriate service could not be found.
Depending on the environment, the system log may not be
visible.

It should be possible to test if a service has connected
successfully and to react accordingly.

□

4.2 Lifecycle contract

cards and agent may choose to implement the Lifecycle
contract.

The Lifecycle has four initialization methods and one
termination method, which are called by the container
synchronously after the card has been wired up but before it can
start processing any requests.

Page 43

Lifecycle.init

The init method is called immediately after the services have
been wired up.

The result of the init method is fully processed before any more
methods are called.

Lifecycle.load

The load method may or may not be called. The load method is
called if there is data to present to the card. If the method is
called, it will be passed an entity which will be the root entity
which the card is expected to render.

The result of the load method is fully processed before any more
methods are called.

Lifecycle.state

Cards may choose to store state about the rendering of an object,
for example, to remember the options associated with user
controls on the card which it is not appropriate to store in the
entity itself. If an entity has been loaded using the load method
and this card has previously recorded state about this entity,
then the state method will be called after the load method with
an entity representing the stored state of the object.

The result of the state method is fully processed before any
more methods are called.

Lifecycle.ready

Once the result of the state method has been fully processed,
the card will be ready to respond to user messages.

■

Page 44

In general, an actor will arrange its lifecycle in such a way that
the ready method will be responsible for most of its
configuration. The init method is only generally used to do
default configuration which might be overruled by later
considerations in the data or state methods.

□

Lifecycle.closing

When a card or agent is being disposed, the closing method
will be called to allow the card to take any last minute actions.
These actions may not interact with the user.

■

The subject of resource management is discussed elsewhere,
but in general cards and agents are disposed when one of two
situations occurs:

• the browser (or browser window) is closed and the entire
application is going away, or equivalent actions in other
environments;

• the card is part of a punnet in a parent window that is
being emptied or closed.

In particular, cards expect to be nested and punnets will hold
nested cards. When the user selects a different view, or
different entity to view, the current set of nested cards will be
closed and new ones opened.

□

Page 45

Commentary

4.1c Containing Environments

FLAS is agnostic as to how the containing environments
initialize the system and create the cards.

The only consideration from a FLAS perspective is when the
card, agent or service comes into being, it has been correctly
connected (abstractly) to the external services it requested. It is
likewise agnostic with regards to whether those services are
local or remote. Indeed, much of the power and simplicity of the
FLAS model comes from this very ignorance of the wider world.

But it is worth spending at least a moment considering the
different environments in which FLAS can be deployed.

Browser

The most common deployment for FLAS is the ubiquitous
browser. By providing a suitable HTML wrapper, any card or
agent can be deployed in a browser running JavaScript, either as
the main window or within an iframe. It is also possible to load
the code for individual cards into another web application.

Phone Apps

FLAS has been designed with portability and efficiency in mind.
It is possible to generate JVM bytecodes from FLAS and then
assemble an Android app using an appropriate container library.
This allows combinations of cards to be deployed as applications
and individual cards to be deployed in a manner which is
interoperable with these applications.

The same approach could be used for Apple iPhones, but there
are issues with clearing the hurdles to provide such applications
through the AppStore.

Page 46

Microservice Containers

Although cards and agents cannot be deployed into
microservice containers for performance and threading reasons,
it is possible to deploy services in this way.

The container would obviously need to support the
configuration of services and provide the appropriate
downstream services on which the service object depends.

Ziniki is the recommended microservice container for this
purpose.

Embedded in Applications

Because FLAS offers a code abstraction, it is possible to use it in
other applications if they have been designed to interact through
contracts.

Typically, such applications will prefer to interact with agents,
but there are use cases where the template support of cards
might be desirable.

Ziggrid, Modeller and WebPresenter are examples of
applications that can embed cards and agents.

Page 47

5 Expressions

Expressions form the building blocks of FLAS programs.

(48) expression ::= literal
| var-name expression*
| UNOP expression
| expression BINOP

expression
| expression COLON

expression
| ORB expression CRB

FLAS is a strictly typed language with type inference. Every
expression has an associated type.

5.1 Literals

The simplest expressions are literal values.

(49) literal ::= NUMBER
| STRING
| TRUE
| FALSE
| list-literal
| object-literal

(50) list-literal ::= OSB CSB
| OSB expression

comma-expression* CSB
(52) object-literal ::= OCB CCB

| OCB object-member
comma-object-member*
CCB

(53) object-member ::= object-key COLON
expression

(54) object-key ::= var-name
| STRING

(55) comma-object-member
::= COMMA object-member

Numeric Literals

Numbers are expressed according to the regular expression
[0-9.e+-]+.

All numeric literals are non-negative. Negative numbers are
expressed using the unary negation operator applied to a
numeric literal.

All numeric literals are of the primitive type Number. The FLAS
type system does not distinguish between integers and floating
point numbers, although runtime checks are performed when
integers are required.

String Literals

Strings are quoted and must have balanced quotes on a single
line. Literals that need to be broken can be placed on separate
lines and concatenated using the ++ operator.

Either single (') or double (") quotes may be used to define
strings, but they may not be mixed.

A duplicated quotation mark within the string allows the
quotation mark to be included in the string.

String literals are of type String.

■

A string literal such as

'hello ''world'''

will evaluate to

hello 'world'

although of course it is much clearer to write

"hello 'world'"

□

Page 49

List Literals

Lists may be defined directly by writing expressions within
square brackets ([...]) and separating items with commas (,).

The empty list literal ([]) is of type Nil; all other list literals are
of the type Cons[T] where T is a polymorphic type variable most
accurately describing the types of the members. If no better type
can be determined, Any will be used for the value of T.

Tuples

A tuple is a group of two or more values whose types may be
unrelated.

They are typed as TupleN[A,B,C…] where N is the number of
values in the tuple and A, B, C... are the types of the tuple values.

Hash Literals

Hash literals may be specified using JSON-like notation.

The keys may be string literals or variable names. If variable
names are used, they will be converted into the corresponding
string literal as if they had been placed in quotes.

All hash literals are of the type Hash.

■

The use of variable names as keys is a convenience as provided
in JavaScript. However, the range of names is not limited to
those which can be expressed as FLAS variable names, so the
range of possible keys using string literals is greater than that
of variable names.

□

Page 50

5.2 Function Calls

Functions expressions are written as the name of the function
followed by zero or more arguments. No additional syntax is
required.

Function argument binding has the highest precedence in FLAS,
so when it is desired to have an expression be an argument, it
must be placed in parentheses.

A function of no arguments is a constant.

All function definitions must be strongly typed, although it is
possible to define mutually recursive functions whose types are
inferred together. The type of a function call is the result of
applying the function to its arguments. If the arguments are not
of compatible types, the resultant type will be an error.

It is perfectly acceptable for the result of a function call to be a
function type.

5.3 Unary Operators

Unary operators are followed by a single expression and have a
specific precedence (but which will always be lower than
functions and parentheses).

Otherwise, they are identical to a function call of one argument.

5.4 Binary Operators

Binary operators are placed between two expressions and have a
specific precedence (but which will always be lower than
functions and parentheses). Precedence and associativity will be
used to determine the exact meaning of an expression.

Otherwise, they are identical to a function call of two arguments.

Page 51

5.5 Parenthetical Expressions

It is possible to group an expression in parentheses (...) in
order to make the expression so enclosed have the precedence of
a single term. The value and type of the expression remain
unchanged.

Page 52

6 Structs, Entities and Unions

In addition to primitive types, lists and hashes, FLAS offers the
ability to build composite types.

Three basic methods of composition will be discussed here:
struct, entity and union.

6.1 struct

A struct allows a set of values to be combined into a single
value in a well-defined and type-safe manner.

(10) struct-declaration
::= STRUCT type-name

poly-var*
(14) struct-field-decl ::= type-reference

var-name
struct-initializer?

Each of the field definitions in a struct defines a slot for a single
value of a named type. The field name may be used to extract
the value from the struct value later.

All values constructed using this method have the type of the
struct.

struct definitions may be polymorphic. In this case, one or
more polymorphic type variables may be specified after the
struct name and may then be used in the definition of the
fields.

struct fields may be of any type, including recursive references
to the type being defined or to other type definitions which
reference the struct.

Individual fields in the struct may have initializers. An
initializer is used to populate the value of the field when the
struct is created, although it may be overridden by creating the
struct with a hash value.

6.2 entity

An entity is similar to a struct, but it has a unique identity.

(11) entity-declaration
::= ENTITY type-name

poly-var*

Because they have a unique identity, entity values may be
stored reliably in data stores, updated, referenced and retrieved.

The actual identity of the entity is an implementation detail not
exposed to programs.

6.3 union

A union represents the set of values contained in the union of a
collection of other types.

(16) union-declaration ::= UNION type-name

A union may be polymorphic. In this case, one or more
polymorphic type variables may be specified after the union
name and may then be used in the definition of the fields.

Page 55

7 Crobags

Crobags are a collision-resistant ordered bag of pairs of keys and
entities.

They can be persistently stored with an identity. If so, managing
the identity is an implementation detail.

A Crobag is a polymorphic type and is constrained by the type
of entity which it contains

The keys are always strings. They may be encoded in UTF-8
except for the first character which must always be ASCII
#21-#7E.

■

It may be helpful to think of a Crobag as a map, but they are
richer than that. It resembles a map in that internally, its keys
are unique, each of which has a value, but it is possible to add
duplicate keys in such a way that they are made unique during
addition.

□

■

The restriction on the opening character of the key is to ensure
that ! (#21) and ~ (#7E) can be reserved for the favorites
feature. Note that the key is only used internally and is never
displayed to users.

□

■

The contents of a Crobag must always be entities because the
Crobag is represented on a server as a list of entity ids.

□

7.1 API

A Crobag has semantics as if it were an Object definition.

Entities may be added to, removed from or replaced in the
Crobag by methods.

ctor new

A Crobag can be created using the constructor new.

method put key value

It is possible to place an entity in a Crobag with a specific key by
using put. This guarantees that the value associated with the
specific key is the specified entity until it is changed

■

Note (as in the commentary following) that a key property of
Crobags is collision resistance. That is, if two clients make
similar, but different, changes, the Crobag will resolve the
inconsistency. The put method is intentionally not collision
resistant: the change that arrives at the store of record last will
determine the ultimate value of the entry associated with the
key.

□

method insert key value

It is possible to place an entity in a Crobag somewhere around
the specified key using insert. This guarantees that a new
entry will be created in the Crobag with the specified value and
it will sort with other entries with similar keys.

■

Page 57

Being precise about exactly what happens in a highly
distributed, parallel system is always difficult. In this case, the
system will eventually come to a consistent state where there is
a new entry in the Crobag with the specified value. It will
either have exactly the requested key or it will have a key
whose prefix is the specified key.

Because there are no particular limits on what keys clients will
choose to use, there is no guarantee that there will not be other
entries with different intended keys interspersed with the
entries for this intended key.

Consider:

bag.insert "pre" e1

bag.insert "pre" e2

bag.insert "prefix" e3

The system guarantees that the entries for e1 and e2 will start
with the string "pre" but makes no other guarantees. It could
choose to use the exact string "pre" for e1 and "pre_1" for e2.
Likewise, it could use "prefix" exactly for e3. In this case, the
entries would sort as follows:

pre -> e1

prefix -> e3

pre_1 -> e2

which, while it might not be what you would expect, respects
the concept that e1 and e2 "sort together": that is, all three
appear in the set of entries beginning with "pre".

□

Page 58

method upsert key value

It is possible to ensure that the entity in a Crobag associated with
the specified key has the given value using upsert. If the key
already exists, the fields in value will be used to update the
current entity; if the key does not currently exist, the entity itself
will be inserted precisely at the key.

■

The semantics of upsert again need careful attention to detail.
In an event driven system, the operation described may be
applied multiple times (once on the client and once on each
replicated server). The same semantics need to be applied on
each occasion and the system needs to be eventually
consistent.

Consider a case in which two clients attempt to upsert the
(previously absent) key "welcome" at approximately the same
moment (sufficiently that neither sees the other's update before
communicating their own message to the server).

In each client, there is no such entry in the Crobag when the
operation is performed locally. Consequently, the specified
value is inserted at the specified key. Both clients then report
to the server that the new (key, value) pair should be upsert
ed.

One will be processed first and will again be treated as a put

operation and the entity - with its internally managed id - will
be placed in the Crobag. When the second operation arrives, it
will attempt to update the entity. Note that this update will
happen regardless of whether the id or version matches.

If the intent is simply to update the value of an entity already
known to be in the Crobag, updating and saving the value is
sufficient - the Crobag already has the entity's id and that is all
it actually stores.

□

Page 59

Commentary

7.1c A Language Feature

In spite of the brevity of this section, Crobags are a language
feature - and not just part of the standard library - because the
runtime (on both client and server) is intimately aware of them
and handles them as special cases. If they did not exist, it would
not be possible to replicate their functionality in application
code.

7.2c Use in Templates

Because Crobags are ordered, they can be used as lists. Inside
card definitions, it is possible to assign a Crobag value to a
container.

When used in a template, the Crobag will respond to user
gestures to select the appropriate entries to display based on a
sliding window and provide infinite scroll to the container.

For Crobag which support arbitrary ordering, the container will
also support dynamic reordering using drag and drop.

7.3c Collision Resistance

Standalone FLAS programs fail to realize much of the benefit of
using a Crobag. The key benefits come from their properties of
collision resistance and client-side caching.

Collision resistance is a property of collections which says that
when two clients attempt to perform operations without having
seen the results of the previous clients' operations, the server is
able to process both operations in either order and come out
with consistent results.

Page 60

For comparison, the act of storing "the current contents of this
list" on a server is not collision resistant because a change by one
client would simply overwrite the changes of the other.
Likewise, mindlessly replicating the operations on a list (such as
"delete the fifth element") might not perform the right operation
if the elements have changed order (for example because of an
insert) before the operation is processed on the server.

Crobags are collision resistant because if two clients attempt to
perform operations at the same time, the server will resolve the
apparent contradiction by taking into account the clients'
intentions as specified by the operations they chose to use and
then notify both clients as to the outcome. Because FLAS and
Ziniki are notification based, both clients will end up with a
consistent view of the entire Crobag.

As noted in the API section, it is important to understand the
semantics of the individual operations to ensure that the correct
intention is adequately described. The API has been carefully
designed to give managed and expected behaviors, but it is
important to choose the right operation for the situation in mind.

7.4c Client-Side Caching

Crobags are often used in scenarios where the total contents of
the Crobag can be vast, approaching infinite. Examples might be
the contents of email folders, archives of newspaper articles, or
historical stock prices.

In all these cases, it is possible to store all the data on a
(sufficiently large) server cluster; it is not generally feasible to
store it on - or transfer it to - a client.

Crobags are capable of storing a window of data elements which
the user is interested in and leaving the rest on the server to be
dynamically loaded in response to a query or scroll event.

Clients cannot tell if a Crobag is stored persistently or
transiently. Examples of transient Crobags are the results of
queries (such as messages in an email folder from a particular
individual). Such transient Crobag objects will always be backed
by a persistent Crobag.

Page 61

7.5c Natural and Arbitrary Ordering

Crobags will frequently have a natural ordering - for example,
stock prices might be ordered by date and ticker symbol. This
enables the client to determine a unique key and use the put and
upsert operations.

On other occasions, the contents of a Crobag might have no such
ordering. In this case it is possible to ask the Crobag itself for
keys at the beginning or end of the Crobag or somewhere
between two existing entries. In these cases the insert
operation should always be used.

7.6c Favorites

Crobags have native support for favorites. In the case where an
arbitrary ordering is used this will generally not be necessary,
although it is still a possibility. However, when a natural
ordering is used, any keys starting with ! will automatically
appear at the front of the list and any keys starting with ~ will
appear at the end of the list.

There is nothing magic about this: these characters are simply at
the beginning and end of the range of acceptable key starting
characters and are guaranteed not to be generated by the start
and end key generating methods, but are generated by the
firstFavorite and lastFavorite methods.

7.7c Events

All the Crobag operations are methods but in accordance with
FLAS method semantics, do not directly update the state of the
Crobag. Instead, they generate events which cause the Crobag to
be updated immediately after the current method ends; the same
events are then sent over to the server for processing there.

Page 62

Additional internal events are sent from the server to the client
to inform it of changes performed for consistency purposes (for
example, if a key allocated for use with insert had already been
allocated by another client). These are handled internally
without reference to the application code, which does not need
to be aware of them.

7.8c Usage Patterns

Page 63

8 Functions

Functions map a set of values to a single result value.

(27) function-case-definition
::=

simple-function-case-definition
|

degenerate-guarded-function-case-definition
|

guarded-function-case-definition
(28) simple-function-case-definition

::= var-name
argument-pattern* EQ
expression

(29) degenerate-guarded-function-case-definition
::= var-name

argument-pattern*

Functions are defined as a set of cases, each of which identifies a
pattern for each of the input values it accepts and a result value
if those patterns match.

If no patterns are specified, then the function is a constant, and
only one case may be specified.

If more than one case is defined, each case must specify the same
(non-zero) number of patterns.

The cases may be presented in any order, and the patterns may
overlap arbitrarily, but for each possible combination of values
exactly one case must be a unique best match. If guards are
used, the value of the function will be determined by evaluating
the guards for this best match case as below; otherwise, the
single equation associated with this best match case will be used
to determine the value of the function.

The type of a given function is determined by inference as
discussed in the next chapter.

8.1 Pattern Matching

In each case of the function, each formal function argument is
specified as a pattern. FLAS supports three types of patterns.

(36) argument-pattern ::=
argument-pattern-variable

| argument-pattern-list
| argument-pattern-typed
| argument-pattern-ctor

(38) argument-pattern-variable
::= var-name

(39) argument-pattern-list
::= OSB CSB
| OSB argument-pattern

comma-argument-pattern*
CSB

(40) comma-argument-pattern
::= COMMA argument-pattern

(41) argument-pattern-typed
::= ORB type-reference

var-name CRB
(42) argument-pattern-ctor

::= ORB type-name OCB CCB
CRB

| ORB type-name OCB
field-argument-pattern
comma-field-argument-pattern
* CCB CRB

(43) field-argument-pattern
::= var-name COLON

argument-pattern
(44) comma-field-argument-pattern

::= COMMA
field-argument-pattern

A simple variable pattern consists of just a variable name which
has not been previously defined in this scope. This specifies no
new information about the argument.

A typed pattern must be written in parentheses with a single
type reference and a single variable name. The variable is
restricted to being of the designated type.

Page 65

A constructor match pattern matches some or all of the fields of
a struct or entity definition. If the struct or entity has no
arguments, then the constructor name serves as a match by itself.
Otherwise, the pattern must be enclosed in parentheses and the
constructor name is followed by a hash construct which matches
field names to sub-patterns. By itself, a constructor match
pattern constrains the types that the case can handle but does not
introduce any new variables into the scope. However, any
nested patterns are constrained to belong to the appropriate
types for the fields they match.

8.2 Guarded Equations

In addition to pattern matching, it is possible to choose between
expressions by using guards.

(30) guarded-function-case-definition
::= var-name

argument-pattern*
(31) guarded-equations ::= guarded-expression+

guarded-default-expression
?
(32) guarded-expression

::= GUARD expression EQ
expression EOL

(33) guarded-default-expression
::= EQ expression EOL

In order to use guarded equations, the function name and
patterns must be presented on one line and the guarded
equations in a nested block.

The last guarded equation may be just an equation introduced
by (=), and not containing a guard. Otherwise, a guarded
equation consists of a guard, introduced by (|), and an equation
introduced by (=).

Each of the guards must be of type Boolean.

Each of the guards is evaluated in the order presented until one
of them evaluates to True. The value of the function is then
defined by the corresponding equation.

Page 66

If none of the guards evaluate to True, the default equation will
be used if present. If no default equation is present, the value of
the function is an Error.

8.3 Function Nesting

Function cases may include a nested scope consisting of the
immediately following lines indented one tab deeper.

Each case may have its own nested scope. Nothing is shared
between these scopes. When guarded equations are used, the
nested scope must appear after the final equation nested a
further level of indentation. The nested scope is shared across
all the equations of the case.

The nested scope may define functions, tuples, standalone
methods and handlers. These definitions are only visible to the
enclosing function and definitions in the nested scope.

Definitions in the nested scope may not define names that are
defined in a containing scope.

All the definitions in all containing scopes are visible to
definitions in the nested scopes, including parameters defined in
patterns.

8.4 Tuple Definitions

Tuple definitions allow the elements of a tuple value to be
extracted into a scope.

(34) tuple-definition ::= ORB var-name
comma-var-name+ CRB EQ
expression

(35) comma-var-name ::= COMMA var-name

A tuple definition is identical to a set of parallel constant
function definitions. No patterns are permitted. The expression
and inner scope of the tuple definition may not refer to the
names defined by the tuple definition.

Page 67

8.5 Standalone Methods

Standalone methods are pure functions defined using method
syntax.

(57) standalone-method-definition
::= METHOD

method-definition
(58) object-method-definition
::= METHOD

method-definition
(59) method-definition ::= var-name

argument-pattern*

The method syntax is covered in another place.

8.6 Functions with State

Functions defined within actors (cards and agents) may access
the state members of the actor.

Functions defined within handlers may access the lambda
values of the handler.

Commentary

8.1c Evaluation

The specification above describes formally how a FLAS program
should be understood from a mathematical perspective.
However, it is also important to understand how evaluation is
actually performed.

Page 68

The expression results of functions do not perform any
evaluation - they simply record that a function or operator will
be applied to a set of sub-expressions at some later time. This
expression construct - called a closure - is the physical return
value of a function. In order to be evaluated, this must be
passed to a mechanism that will determine its value.

FLAS is a lazy functional language because it has the ability to
create such expressions that will never actually be evaluated.

Evaluation of an expression happens in one of two cases: either if
the value is used "at the top level" (in an initializer, a template, a
guard or as the return value of a method called from the
container) or if the value is subjected to pattern matching.

The vast majority of evaluations in FLAS are driven by pattern
matching.

Pattern Matching

In order to determine which case of a function to apply, it is
necessary to resolve enough of the structure of the various
arguments to make an unambiguous decision which of the cases
applies.

The first rule is that for every value there must be an
unambiguous correct decision. The compiler will generate an
error if two cases are identical. For example, given:

f 0 = 1

f 0 = 2

It is impossible to unambiguously define the value of f 0.

However, it is acceptable to have cases overlap provided that
one case is clearly "more precise" than the other, regardless of
the order in which they are presented. For instance, with:

g 0 = 1

g (Number n) = 2

It is possible to say that g 0 has the value 1 and g 0 has the
value 2. This would be the same for the function h with the
cases defined in the other order:

h (Number n) = 2

Page 69

h 0 = 1

Only as much of the structure of the argument as is required to
determine the case needs to be evaluated. For instance, it is
possible to determine the emptiness or not of a list without
determining the whole list:

isEmpty Nil = True

isEmpty (Cons h t) = False

Even if applied to an infinite list, say isEmpty

allPrimeNumbers, this is able to complete in finite time because
it is not necessary to evaluate all the prime numbers before
determining if there are any (the first is sufficient).

It is not a compile-time error to have some cases by uncovered.
For example, with:

k 0 = 1

k 1 = 2

It is possible to determine that the case k 2 is not covered. This
will, however, generate a runtime error if k 2 is ever evaluated.

It is a compile-time error to have an argument with an unclear
type. This is discussed in the next chapter.

Guards

Guards are processed in order. Each guard that is processed
must be fully evaluated to either return True or False.
However, when a guard returns True, the corresponding
expression is selected and no further guards will be evaluated.
Because of this, thought should be given not just to the correct
logic in deciding the order of guards but also to the relative cost
of evaluation (if this can be determined).

Page 70

8.2c Scoping

The rules concerning scoping may seem complex at first, but
they are well founded.

The idea is to permit complex expressions to be broken down by
use of locally named subexpressions. It is very common in
scoped definitions to use constant definitions which abstract
some of the complexity of the main calculation. In general,
however, these are not actually constant because they depend on
names inherited from enclosing scopes.

The rules regarding names are simply to ensure that there is no
ambiguity about what a name means. In any scope where a
name appears, it must have exactly one meaning. Given that all
names from the outer scope - and all names defined in the
patterns of the current case - are incorporated into a nested
scope, it is not permitted to define new functions or parameters
reusing these names since that would create an ambiguity.

8.3c Standalone Methods

Although standalone methods look like contract or handler
methods, they are fundamentally different. In reality, all
methods are somewhat illusory - they are a function mapping
arguments to messages. But for most methods, they must
conform to a specified contract and their values are immediately
interpreted by the system. These are fundamental language
features.

On the other hand, standalone methods are just there as
syntactic sugar to make it easier to define functions returning a
list of messages. They may have an arbitrary number of cases
and patterns and perform pattern matching in the same way as
functions. They may be nested inside methods and functions.

Page 71

9 Type Checking and Inference

FLAS is a strongly typed language. Every value is defined as
belonging to a specific type and these types are tracked during
compilation and at runtime.

FLAS tries to minimize the number of type declarations,
requiring them in type declarations and at code boundaries (in
contracts and handlers).

Some contexts require values of specific types. In these
situations, the type of the value will be determined and an error
emitted if it is incorrect.

In all other situations, the existing type information will be
evaluated and, if possible, the types of remaining symbols will
be determined. If no determination can be made, an error will
result.

9.1 Type Declarations

In struct and similar declarations, each field is given a name
and a type. Whenever the field is subsequently referenced, it
will be of the specified type.

In contract method declarations, each formal method argument
must be a typed pattern. All implementations of this contract
method must have the same number of arguments, each of
which has the same type as that defined by the corresponding
contract argument.

9.2 Type Checking

Values used in equation guards must always be of type Boolean.

Values placed in template content cells, or used as template
styles, must be of type String.

Values used in template conditional styles must of type Boolean.

Values returned from methods must be Message,
List[Message] or a compatible value.

9.3 Type Inference

The types of function, standalone method, tuple and parameter
values can be inferred from the context. This is done
automatically and the resultant types stored and, if applicable,
exported.

The most general type - including polymorphism - will be
calculated.

If no single type can be deduced, an error will result indicating
the set of symbols which seem to have mutually contradictory
type expectations.

9.4 Overriding the Type Mechanism

The cast operator acts as a function of two arguments. The first
argument is the desired type; the second argument is a value of
unknown or wider type. The result is the same value but of the
desired type.

The actual type will be preserved at runtime and will be checked
against the desired type. A runtime error will be generated if the
value is not of the specified type.

■

Page 73

In general, the cast operator is used when a value has type
Any due to circumstances outside the program's control. Some
contracts - not knowing the inner workings of the program -
specify that values are of type Any because they cannot do
better. Some data structures - such as Hash and List[Any] -
return values of type Any.

In all these cases, cast is the simplest and most reliable way of
bringing the value back into the type safe world. It should be
used as close to the offending interface as possible.

Using cast in most other circumstances should be considered
a code smell, and is likely to cause runtime errors.

□

■

I'm not really sure how much more to actually say in the
specification.

□

Commentary

9.1c Type Inference Algorithm

Type checking is easy. Type inference is hard.

Type inference in FLAS is based on the Hindley-Milner
algorithm. The algorithm works from what is known to what is
unknown. The first step is to deduce the dependencies between
names in the program and break all the definitions into groups
of functions which depend only on either what has gone before
or on each other.

Each such group of functions will be tackled together, along with
all of the formal parameters deduced from patterns.

Nested functions cause a particular problem, especially when (as
they usually do) they reference parameters from an enclosing
scope.

Page 74

The essence of the algorithm is to determine the input types of a
function by taking a union of all the patterns. Complicated by
having union types. Try and find the minimal union type which
fits. Can be helped/resolved by having the "catch-all" case
specify the type you want rather than just having a variable.

Can use "Any" to say you want to accept everything.

Can accept "Error" and not have it show up in the type.

The output type of the function is handled by dealing with each
expression in turn and figuring out what type it is, and then
doing a minimal union of all those values. Any is not an
acceptable answer unless one of the cases resolves to type Any.

This is fine if the group has just one function depending only on
things that have been previously defined. It gets more
complicated when the group has multiple members.

In this case, a type variable is introduced for each unknown in
the group:

• each function name
• each standalone method name
• each tuple variable name
• each parameter name that is not clearly typed
• each polymorphic type used in the definitions of the

function parameters.

Note that a single polymorphic type name used within a single
function definition maps to the same type variable. But if the
same name is used in different function definitions, one type
variable will be introduced for each function.

Once the type algorithm has processed, the type variables will
have collected information about all the constraints that are
required of them and a unification process is run which deduces
the maximal types which fulfill all the constraints for all the
variables. The resulting types are then inserted in the
appropriate places to complete the type definitions.

If one or more of the type variables does not have a consistent
solution, an error is reported indicating the problem and the
usages that led to it. These messages are inherently complex, but
it is hoped that over time they will become more easily
comprehended.

Page 75

10 Contracts

Contracts define the protocols by which actors communicate
with each other.

Contracts come in three varieties: implementation contracts
handle "downward" or "nested" communication to contained
agents or cards; service contracts handle "upward" or "outward"
communication from contained actors to service providers; and
handler contracts define the structure of responses.

Contracts are defined with a kind, a name and a set of methods.

(23) contract-declaration
::= contract-intro

type-name
(24) contract-intro ::= CONTRACT

| CONTRACT SERVICE
| CONTRACT HANDLER

10.1 Contract Methods

Every contract method has a name.

Contract methods may have arguments. Each of these needs to
be a typed pattern indicating the expected type and function of
the parameter.

(25) contract-method-decl
::= OPTIONAL? var-name

argument-pattern-typed*
handled-by?

(26) handled-by ::= HANDLE
argument-pattern-typed

(41) argument-pattern-typed
::= ORB type-reference

var-name CRB

A contract method may optionally accept a handler of a specific
type over which responses will be sent. The handler's type must
be a contract.

Commentary

10.1c Role of Contracts

Contracts are absolutely central to the operation of FLAS.

Cards, agents and services are essentially unaware of each other
and are completely decoupled except through contracts and
entities.

While it is possible for one card to create another card directly by
name, much of the time cards are created because an entity is
placed in a punnet. The only way in which a containing card
knows how to interact with the contained card is through a set of
contracts it expects the cards in that punnet to implement.

10.2c Directionality

It is fairly easy to see the directionality in cards: there is one card
that "is" the application, and that contains other cards, which
contain other cards… The application card is itself in a
client-side container. One set of messages ("do this" messages, if
you will) flow downwards, while another set of messages
("request" messages) flow the other way, looking for services.

If no cards or agents provide a service being requested, the
request is propagated to the client-side container. Some
contracts have services implemented directly in the container
(such as Repeater and Ajax). If the client-side container cannot
find an implementation, it may forward the request to a
server-side container if one is connected.

Page 77

10.3c Testing

1
This feature is not yet implemented.

Page 78

11 Objects

Objects in FLAS provide the ability to encapsulate data and
methods in a single structure.

Objects can only be created within the scope of an actor.

Objects may be used to encapsulate entities, thus giving the
(data-only) entity the appearance of being a persistent object.

(71) object-declaration
::= OBJECT type-name

(72) object-scope-unit ::= state-declaration
| object-ctor-definition
|

named-template-definition
| object-acor-definition
|

object-method-definition
|

function-case-definition
| handler-definition

11.1 Object State

Objects may have a state definition.

The fields in the state definition may be initialized provided that
the initialization code does not have any external dependencies
or generate any messages. All other initialization code must be
put in constructors.

The state members are only visible to code definitions within the
object. Tests have special permission to access state fields using
the assert and shove operations.

(73) state-declaration ::= STATE

11.2 Object Constructors

Objects are constructed using named constructors.

An object must have at least one constructor.

(74) object-ctor-definition
::= CTOR method-definition

The constructor definition is preceded by the keyword ctor.

A constructor has a name and zero or more arguments

The creation of a new object is implicit; the constructor method
returns messages which initialize it.

If no initialization is necessary, the constructor may have an
empty body.

The constructor is called by using the type name, followed by a
DOT (.), followed by the constructor name and any arguments.

Because constructors may return messages along with the new
object, they may only be called from contexts in which message
methods are allowed.

11.3 Object Methods

Objects may declare read-only methods, called accessors.
Accessors are pure functions that map values to values. They
may reference state members.

Objects may declare update methods which return messages.
Update methods may wish to also return a value. In this case,
the method must return a value of type ReturnWithMessages.

(75) object-acor-definition
::= ACOR

function-case-definition
(58) object-method-definition
::= METHOD

method-definition

Page 81

These definitions are accessible to clients of the object using the
member expression syntax: a variable name (of the appropriate
object type), followed by DOT (.), followed by the accessor or
method name.

Accessors may be referenced from any context; methods may
only be referenced from a message method context.

11.4 Services

11.5 Nested Scope

Objects may nest arbitrary functions and handlers.

These nested definitions are only visible to definitions within the
object definition.

These definitions may access the object state.

Commentary

11.1c Not an Object-Oriented Language

Although it contains the object definition, FLAS is not, and
makes no claims to be, an object-oriented language and you will
suffer heartache if you try to treat it as one.

The main building blocks in FLAS are actors, and their primary
means of communication is through contracts. The main data
representation structures are (transient) structs and (persistent)
entitys. Objects are an adjunct to this to make some
abstractions and encapsulations easier to write and maintain.

In general, objects are written as wrappers around entitys,
thus providing the appearance of behavior on something which
is really just data.

Page 82

12 Methods

Methods are syntactic sugar for functions that map values to
messages.

Methods may exist in a number of scopes and this determines
how they are introduced.

In each case, the body of the method is the same.

(60) method-guards-or-actions
::= method-guards
| method-actions

(61) method-guards ::= method-guard*
(62) method-guard ::= GUARD expression
(63) method-actions ::= method-action*
(64) method-action ::= message-method-action

| assign-method-action
(65) message-method-action

::= SEND service-method
expression*
maybe-handled? EOL

| SEND expression EOL
(66) service-method ::= var-name APPLY

var-name
(67) maybe-handled ::= HANDLE var-name

(68) assign-method-action
::= member-path SEND

expression EOL

12.1 Guards

Methods may be guarded. Guards in methods work exactly as
in functions.

12.2 Sending Messages

12.3 Updating State

Commentary

12.1c Messages

FLAS is a pure functional language wrapped in an actor model.
Each interaction represents a mapping from one system state to
another, and this can be expressed as a set of messages. During
the evaluation of the interaction, the actor state does not change,
no actor has access to the internal state of any other system
component and the state of an actor never changes except
through an explicit interaction. In this way, the apparent state of
an actor is always consistent and it is possible to reason logically
about both the actor state and the overall system state.

FLAS can be considered to be transactional in that the interaction
either generates a set of messages or it does not, and then either
all of those messages are consumed or none of them are. Of
course, it takes more than that to make a system truly
transactional in an ACID sense

Messages are just values. The Message type is a union

consisting of various nested message types. A function can
create values of these types.

A method is simply a function that is called from a context in
which it is possible to directly harness the messages being
returned. There are three such locations:

Page 85

• within implementations of contracts inside actors;
• within the event handlers of cards or objects;
• within any existing method declaration.

Standalone methods are exactly syntactic sugar for moving
between methods and functions and may only be called from
other methods or functions.

12.2c Conflicts

It should not be possible to attempt to update the state of an
object or actor inconsistently. It should, however, be apparent
that it is possible:

object Obj

state

Number n <-0

method wrong

n <- 1

n <- 2

And, indeed, in this trivial case, it is easy to spot (even at
compile time), but it is clear that there are more complex cases
where more subtle conflicts can arise, including updating a
value nested within a value which is removed from the actor
state by another update.

It is anticipated that as time passes, the algorithm for detecting
such conflicts (especially at compile time) will be improved, but
in the meantime it is important to try and write code to minimize
conflicts.

Page 86

13 HTML Visual Designs

In order to generate HTML from the template mechanism (see
§12), it is necessary to indicate within the HTML design where
the card and item boundaries are, and how the fields are
mapped within these.

