
Page 1

Introduction
Programming languages can be broadly divided into two: general purpose
programming languages are intended to solve a wide array of problems; whereas task
specific programming languages are more finely tuned to the solution of a narrower
class of problems.

Although capable of addressing many problems, FLAS is unashamedly in the second
category. It aims to solve two problems well, one on either side of the web client/server
divide. On the client side, it aims to provide developers with the ability to create
gorgeous, snappy, reactive applications with ease; and on the server side it assists them
in building the kind of reactive microservices that underpin those client applications.

Moreover, there is almost no area of programming about which FLAS is agnostic; it has
strong opinions on almost every big debate in programming. If you don't like that, then
you probably want to go elsewhere. But to avoid later confusion, we would like to state
up front that these are deliberate, unquestionable opinions baked into FLAS:

• Testing at every level of scale is an absolute imperative and it will be supported,
encouraged and demanded of FLAS applications.

• Programs should be reactive, tell-don't-ask and should subscribe to event
sources; they should not use getters, request/response or synchronous
technology or the appearance of synchronicity.

• Logic should be clear, transparent and provable using functional, declarative
semantics.

• The iteration length of any action should be as short as possible, promoting
comprehensibility of code blocks.

• Programs should be strongly typed but with a minimum of declaration and a
maximum of inference.

• Programs should be broken down appropriately supported by suitable building
blocks.

• Programs should be as loosely coupled as possible, and the language should
have all the relevant constructs to support that.

• Program divisions should, where possible, not be arbitrary but flow naturally
from the information flow in the system.

FLAS cannot be a general purpose programming language because it makes too many
assumptions about the kinds of programs - or more specifically, program units that you
want to write. It knows about three basic program units and assumes that you are
working towards one of them:

• Cards support the construction of UI units, combining data and screen real estate
while being connected into a wider ecosystem through contracts.

• Agents facilitate the coordination of cards by combining data with a network of
connections to cards and services.

• Services support the construction of server-side microservices, embedded and
deployed within Ziniki1 servers.

Page 2

Supporting these three units are a number of other building blocks - structs, unions,
contracts, objects and tests which provide the ability to build more general purpose
units for program composition.

FLAS programs are intended to have semantics that are detached from any
implementation language. Currently, it is possible to generate JavaScript and JVM
bytecodes from FLAS, although technically there is no reason not to generate backends
compatible with iOS, .NET, PHP or any other environment.

1 Technically, since FLAS generates JVM and JS code, services could be deployed within servers provided by
any PAAS provider, but for obvious reasons, we will only consider FLAS services embedded in Ziniki
servers.

Page 3

1 Lexical Conventions
FLAS programs are presented to the compiler as a set of files, grouped into packages
(directories). The directory name is used as a package prefix for all the definitions
provided within that directory.

For standard program units, the name of the file is not used in naming FLAS constructs,
although it is used to partition test classes into different subpackages, where a variant of
the file name is used as a nested package within the directory name.

1.1 Unit Translation Types.

(1) file ::= source-file
| unit-test-file
| protocol-test-file
| system-test-file

For each file within a package, the file extension is used to determine how the contents
of the file will be interpreted.

• .fl - a standard program unit, which may contain any normal definitions.
• .ut - a unit test file, containing unit test definitions.
• .pt - a protocol test file, defining tests that can be used to test the compliance of

instances to the expectation of a contract.
• .st - a system test file, that is capable of simulating end-to-end system behaviors

and asserting their correctness.
• .fa - an assembly file indicating how a deployable client or server unit can be

built from components in this (and potentially other) packages.

1.2 Indentation

Within a file, the nesting of definitions is determined by indentation and context.
Significant indentation is provided using leading tab characters, while continuation
lines have the same number of tab characters as the preceding line but additional
space characters to reach the desired continuation point.

■ By convention, FLAS programs are presented with tab stops set at four spaces, but there is
no significance to this. It is hoped that tools (such as IDEs) will make the distinction
between leading tabs and continuation spaces very clear and clearly present mismatched
indentation as such.

□

Page 4

Comments
Blank lines, lines beginning with no tabs, and any portion of a line following two
consecutive slash characters (//) are considered to be comments. For all practical
purposes, after making this determination, comments are ignored by the compiler. They
may, however, be used by other tools for the purpose of providing documentation or
otherwise.

■ Specifically, it is the designers' intent that literate programming should be supported by
tools. To further this, comments that begin in column zero with no leading slashes should
be considered literate comments. These are the comments which would be used to construct
documentation and narratives about the code. On the other hand, comments beginning with
a double slash will generally be considered side-notes by and to developers which are to be
ignored by all tools.

Comments with meta-tags (such as TODO) may at some point be considered by some tools to
be special, but no guidance can be given at this time in the absence of such tools.

□

Nesting

Top-level definitions are identified by having exactly one leading tab character. Any
such definition has global visibility with its package-qualified name and visibility
within the package with its simple name.

A definition may be nested within another definition provided it has exactly one more
leading tab than the enclosing definition. The rules of what may be nested within a
definition depend on the kind of that definition, as do the rules of name scoping; but no
nested definition is directly visible outside the scope of its parent definition.

■ The rules here are varied and complex, but fundamentally constants, functions and
standalone methods are invisible outside their scope; things like fields and object methods
are visible within the context of a container of the enclosing type; and things such as
conditional definitions are visible as part of the enclosing definition.

One implication of the "one more leading tab" rule is that each line in a FLAS program must
have less, the same or exactly one more leading tab than the preceding line (ignoring
comment lines).

□

Page 5

1.3 Names
FLAS supports four types of names with different lexical rules:

• field names must start with a lowercase letter, followed by an arbitrary number
of lowercase and uppercase letters, digits and underscores. CamelCase is used to
indicate word boundaries.

• type names must start with an uppercase letter, be at least three characters long,
and have the remaining characters be uppercase and lowercase letters, digits and
underscores. CamelCase is used to indicate word boundaries.

• polymorphic type variables must be one or two characters long, the first of which
must be an uppercase letter and the second may be an uppercase letter or a digit.

• template names must start with a lowercase letter, followed by an arbitrary
number of lowercase and uppercase letters, digits, hyphens and underscores.
While uppercase letters and underscores are permitted, lowercase letters and
hyphens are generally preferred. Hyphens are used to indicate word boundaries.

These kinds of names are referenced as appropriate within this manual.

1.4 Constants

Apart from named type constants, FLAS supports constants of the builtin primitives:

• String constants are indicated by the use of single or double quotation marks.
These may be used interchangeably to indicate the start of a string, but they must
be used in matched pairs: that is, a string beginning with a single quotation mark
continues until a closing single quotation mark is encountered; and likewise with
double quotation marks. A terminating quotation mark may be embedded within
a string by placing two consecutive marks in the string; one will be maintained
and the string will continue.

• Integer constants are indicated by a sequence of one or more digits. Negative
numbers are not supported as constants but rather as expressions using the unary
minus operator and a positive integer constant.

• Floating point constants are indicated by a sequence of zero or more digits,
followed by a dot (.), followed by zero or more digits, optionally followed by an
exponent symbol (e, e-, E or E-) and one or more digits. One of the two mantissa
portions must have at least one digit.

Both integer and floating point constants are considered to be of type Number.

■ FLAS tries to ride two horses with regards to numbers. On the one hand, it prefers to
assume (as does JavaScript) that there is just one number line and there is nothing really
special about integers; on the other hand, it has to recognize that many applications (such as
array indexing) require integers and it is not reasonable to just ignore their existence.

Page 6

Integers are not formally defined in FLAS: the only recognized number type is Number
which roughly equates to the set of real numbers. However, the implementation -
particularly in the JVM world - is riddled with concern for the distinction between floating
point numbers and integers.

□

■ It is the designers' intent to directly support more primitive types, including monetary
values, dates and intervals. These will ultimately have the appropriate constant types.

Complex numbers may also be supported as primitives if the need arises, but as was noted
in the introduction, FLAS is not intended to be a general purpose programming language
and complex numbers seem outside the intended applications of the language.

□

1.5 White Space

The issues regarding leading white space have already been addressed. This section
only relates to white space found after the first non-white-space character and not in a
comment.

Within a line, any white space not occurring within a string constant is considered to
end the current token and introduce a new one. Within a line, multiple consecutive
white space characters are considered equivalent to a single space. Within a line, all
white space characters are considered equivalent.

When a line is continued by starting a new line which begins with the same number of
tabs as the previous line and one or more non-tab space characters, the compiler
internally joins the lines together, removing any newline (CR and LF) characters but
preserving any other white space (tabs and spaces) originally present.

An arbitrary number of continuation lines may be joined together in this way, all of
which must have the same number of leading tabs; the first of which must have no
subsequent white space; and all the others must have at least one space after the leading
tabs. There is no rule about the relative number of spaces following the leading tabs -
that is left to the developer's sense of clarity and aesthetics.

1.6 Punctuation Characters

In addition to names and constants, FLAS defines operators and punctuation characters.

Punctuation characters stand alone and constitute a single symbol by themselves and
may not be combined into larger symbol characters.

The following characters are punctuation characters

• Parentheses (and)
• Brackets [and]
• Curly brackets { and }

Page 7

• Comma ,

1.7 Symbols and Operators

The remaining characters are considered symbol characters and may be combined into
composite operators. An operator is either an individual symbol character or a sequence
of symbol characters which have been defined to have meaning as an operator. Some
symbols may also be used in language constructs.

Currently there is no mechanism by which users can introduce new operators.

Operators may be used in expressions as well as in other contexts. They are defined in
the appropriate sections where they are used, along with their precedence (where
appropriate). Where symbol characters need to be placed in distinct operators which are
adjacent to each other, intervening whitespace (or parentheses) must be used as
appropriate.

■ In the long run, it makes sense to allow new, user-defined operators. These are essentially
functions which can be given arity, precedence and associativity. However, doing so in a
truly extensible way (and supporting concepts such as ternary operators) is beyond the
current scope. Consequently, the set of operators is currently limited to the builtin
operators.

□

Page 8

2 Declarations and Scopes
Within FLAS, many different types of concept can be defined; furthermore, the
language is intended to be extensible so as to support additional concepts, in particular
to support concepts internal to Ziniki. Each of these concepts has its own declaration
syntax and then supports specific nested content. The details of these declaration types
will constitute much of this manual.

However, these definitions can be broken down into "families" and these families will
be discussed here.

Most definitions and nested declarations are introduced by a keyword or key operator;
the exceptions are:

• when only one kind of declaration is allowed;
• function definitions.

■ FLAS has been designed from the outset to be a "family" of languages. The core of the
language is the ability to express functional transformations from state to state in
conformance with the actor model. Anywhere that this model is applicable represents a
potential target domain for FLAS.

In this regard, concepts like "cards" and "services" make sense in some contexts and not in
others; more than that, in embedding FLAS in the Ziniki context, it is desirable to have more
direct support for defining new concept types such as storable entities with unique
identifiers; offers and deals between parties and so on. These are not part of the "core"
language.

Similarly, other embedded uses offer other extensions to the core model, but in all cases the
fundamental design of the language remains the same.

□

(6) top-level-unit ::= top-level-definition
| function-scope-unit

(7)top-level-definition ::= struct-declaration
| union-declaration
| envelope-declaration
| wraps-declaration
| contract-declaration
| object-declaration
| service-declaration
| agent-declaration
| card-declaration

(8) function-scope ::= function-scope-unit*
(9)function-scope-unit ::= function-case-definition

| tuple-definition
| standalone-method-definition
| handler-definition

Page 9

2.1 Functions
At heart, FLAS is a functional language, and functions are core to data manipulation in
FLAS. As with most modern functional languages, FLAS functions are mathematically
defined mappings from domains of values to a range of values. While not perfectly
mathematical, the use of lazy evaluation ensures that the operational semantics are
close to the declared semantics.

The family of function declarations should be understood to include standalone and
object methods as well as event handlers and data callback handlers.

Depending on how the function is defined, the immediate nested members of this
family may be conditional cases, which in turn introduces a scope where functions may
be defined. For simple functions, defined on one line, the immediate nesting level
allows functions to be defined.

2.2 Data Types

The family of data type declarations includes struct, union and object definitions in
core FLAS, as well as being subject to extension; Ziniki also defines entity, deal and
offer.

For these types, the immediate nesting level defines fields. Inner nesting levels allow
constraints and metadata to be applied to the individual fields.

2.3 Contracts

Contracts define a set of parallel methods to be implemented by an implementing actor
or handler.

Nested declarations are all declarations of methods to be implemented. Nested
definitions are not allowed.

2.4 Actors

The family of actors includes agents and cards on the client side and services on the
server side in core FLAS; it may also include other actors as appropriate in extension
contexts.

Nested lines may be acceptable nested definitions; nested declarations must be
introduced with a suitable keyword such as state, template or implements.

Page 10

2.5 Templates
WIthin templates, no nested definitions are allowed. The nested declarations must all be
binding, styling or event handling declarations.

2.6 Scoping

Declarations at the top level of a file (with exactly one leading tab) are prefixed with the
name of the enclosing package (the directory in which the file is found), unless the file is
a test file of some kind, in which it is prefixed by the name of the enclosing package
followed by some version of the test file name (usually including invalid characters to
ensure its uniqueness).

■ Unit test files (.ut files) use the package _ut_name. Since the test cases themselves do not
have names (just descriptions), the individual tests are given the names ut0, ut1 and so on.
Placing the tests within separate packages (based on the file name) ensures the uniqueness
of the overall name. Using underscores in the package and test names ensures that they
cannot clash with names defined with FLAS, since these cannot contain underscores.

□

Nested lines have a meaning that is imposed by the enclosing scope.

In many cases, a nested line is constrained to provide a part of the definition of the
enclosing scope. For instance, inside a function definition, a line beginning with the
condition operator (|) forms a function case, an inherent part of the function.

However, when this is not the case, one or more definition types may be allowed; in
most cases constant and function declarations are allowed wherever there is an inner
scope. In this case, the name of the inner definition is prefixed not only by the package
prefix but also by the name of the enclosing definition.

Within a given scope, a single name may not be used twice. Specifically, a name
introduced in a scope at a given level must be unique and must not be defined in any
enclosing definition. While this most obviously applies to function, type and actor
names, it also applies to other names introduced into the scope such as parameter, field
and type variable names.

■ I feel this needs a few examples to make it absolutely crystal clear.

□

Some declarations - such as actors and data types - may not be nested but must be
placed at the top level.

Page 11

3 Environment, Start and Finish
In most programming languages, the start and finish conditions are very clear. Because
of the actor model in FLAS, this is very much less clear and needs to be considered both
in terms of the overall environment and at the individual actor level.

3.1 Environment Start

Browser

App Clients

Embedded Ziniki Server

3.2 Actor Lifecycle

Actor Start

Actor Termination

Page 12

4 Structs and Unions
FLAS offers two data types as standard1.

4.1 Struct Definitions

(10) struct-declaration ::= STRUCT type-name poly-var*
>> struct-field-list

(14) struct-field-list ::= struct-field-decl*
(15) struct-field-decl ::= type-reference var-name struct-initializer? EOL
(17) union-declaration ::= UNION type-name

>>> type-reference

1 More are defined in the Ziniki extensions, see some reference.

